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Abstract 

The paper develops a procedure able to implement the Dynamic Factor Analysis in STATA: this 

methodology manages to combine, from a descriptive point of view (not probabilistic), the cross-

section analysis through Principal Component Analysis and the time series dimension of data 

through linear regression model. An ad hoc step by step procedure is presented in order to highlight 

the wide range of field of application where this (not well known yet in the Anglo-Saxon literature) 

statistical framework may be successfully applied. 

 

1. Introduction 

The aim of the paper is to develop a procedure able to implement the Dynamic Factor Analysis 

(DFA henceforth) in STATA. DFA is a statistical multiway analysis technique1, where quantitative 

“units x variables x times” arrays are considered: 

X(I,J,T) = {xijt}, i=1…I, j=1…J, t=1…T, 

where i is the unit, j the variable and t the time. 

Broadly speaking, this kind of methodology manages to combine, from a descriptive point of view 

(not probabilistic), the cross-section analysis through Principal Component Analysis (PCA 

henceforth) and the time series dimension of data through linear regression model. 

The paper is organized as follows: firstly, a theoretical overview of the methodology will be 

provided in order to show the statistical and econometric framework that the procedure of STATA 

will implement. 

                                                 
∗ Referring author. 
1 That is a methodology where three or more indexes are simultaneously analysed. 
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Secondly, an ad hoc step by step procedure will be presented in order to implement through 

STATA the statistical methodology of DFA, with the goal of providing an overall innovation index 

for the OECD countries. 

Finally, some concluding remarks will be drawn in order to highlight the wide range of field of 

application where this (not well known yet in the Anglo-Saxon literature) statistical framework may 

be successfully applied. 

 

2. A theoretical overview 

The DFA framework has been introduced and developed by Coppi and Zannella (1978), and then 

re-examined by Coppi et al. (1986) and Corazziari (1997): in this paper the original approach will 

be followed. 

The goal of the methodology is to decompose the variance and covariance matrix S relative to 

X(IT,J), where the role of the units is played by the pair “units-times”. The matrix S, concerning the 

JxT observations over the I units, may be decomposed into the sum of three distinct variance and 

covariance matrices: 

S = *SI + *ST + SIT,        (1) 

where: 

*SI = matrix of the static structure of the units = matrix of variance and covariance of the average of 

the units with respect to time. It reflects the variability of the relational structure of the units, 

independently from the time dimension. 

*ST = matrix of the average dynamic of the system = variance and covariance matrix of the average 

of the times. It mirrors the variability, due to the time dimension, of the average of the units, 

independently from the dynamic of the single units. 

SIT = matrix of the differential dynamic of the single units = variance and covariance matrix of the 

interactions between units and times. It reflects the variability due to the difference between the 

dynamic of the overall average of the units, that is the average dynamic, and the dynamic of the 

single units. 

On the basis of the fundamental decomposition of total variability (1), the generic element xijt may 

be considered as the sum of four distinct components: 

xijt = •• jx + ( )••• − jij xx + ( )••• − jjt xx + ( )•••• +−− jjtijijt xxxx ,   (2) 
where: 

•• jx = overall average of the single variable; 
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( )••• − jij xx = effect due to the static structure of the units; 

( )••• − jjt xx = effect due to average dynamic; 

( )•••• +−− jjtijijt xxxx = effect due to the differential dynamic, that is the interaction between 

units and times. 

The relation (2) represents a two-factor model for the variance analysis: the model that will be 

implemented in the empirical section of the work, the so-called Model 1 of the DFA, considers the 

different components of (2) and the relative elements of total variability (1) in terms of PCA and a 

linear regression model. 

Model 1 of DFA is based on the following decomposition of total variability into two components: 

S = (*SI + SIT) + *ST = ST + *ST,      (3) 

where ST is the average dispersion matrix within times (within variability), modelled through PCA, 

while *ST represents the variability between times (between variability), modelled through a linear 

regression model:  

jtjjjt etbax ++=• , j = 1…J; t = 1…T,     (4) 

where the residuals satisfy the following condition: 

( )
    otherwise0

,cov ''

t'j'; tjw
ee j

tjjt

==





= .      (5) 

Condition (5) has to be taken into consideration because the relationship between the j variables has 

to be explained in this model only by the factorial part, that is by PCA relative to ST matrix: the 

average dynamic of the system is distinct from the average dynamic of the single variables. 

Relation (3) is a contraction of the fundamental decomposition (1), due to the aggregation of two 

sources of variability: the static structure and the differential dynamic. In order to asses the 

explaining capability of the model, we may take into account two indicators able to measure the 

variability explained by each of the fundamental components described above: 

 I(t): quality of the representation of the factorial structure at time t; it assesses how well is 

modelled each considered year; 

 IT: it assesses the overall quality of the representation of the model with respect the 

variability of matrix ST. 

 



 4

3. A procedure for the computation of an innovation index 

In this section of the work a step by step procedure for the computation of an overall innovation 

index for 13 OECD countries2 in the period 1992-2000 will be presented. 

In particular, three indicators3 will be considered: 

 Potential innovation (var1): investment in knowledge (% of GDP). 

 Quantitative innovation (var2): number of patents (% of total population). 

 Qualitative innovation (var3): high-technology exports (% of total manufacturing exports). 

Data must be filled into the data editor as in the case of panel data: firstly all the observation of time 

t0, then the ones of time t1, etc.; of course the order of the units must be the same for all times: in 

this case we have for each variable an array of 13*9 = 117 observations. 

The first step of the procedure is the standardization of the considered variables:  

 foreach  x of varlist  var1 var2 var3 { 
  egen z`x' = std(`x') 
  mkmat z`x' 
 } 
 
Then the standardized variables are stored in a matrix A: 

 matrix A = zvar1, zvar2, zvar3 
 
Second step is the computation of ST, the average dispersion matrix within times (within 

variability):  

ST = ∑
=

T

t

t
T 1

)(1 S ,         (6) 

where S(t) is the variance and covariance matrix at time t. The dispersion within times jointly 

mirrors two effects: the effect due to the static structure of data and the one due to the differential 

dynamic of the single units. Matrix ST is computed through the following commands: 

 matrix ST=J(3,3,0) 
 
 forvalues i=1(13)117 { 
  matrix C=A[`i'..(`i'+13-1),1...] 
  svmat C 
  matrix accum cov = C1-C3, deviations noconstant 
  matrix cov=cov/(r(N)-1) 
  matrix ST=ST+cov 
  drop C1-C3 
 } 
  

                                                 
2 Australia, Canada, Finland, France, Germany, Italy, Japan, Netherlands, Spain, Sweden, Switzerland, United Kingdom 
and United States. 
3 Taken from OECD Factbook 2005: www.oecd.org. 
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 mat list ST 
 
 symmetric ST[3,3] 
             C1          C2          C3 
 C1  1.0043003 
 C2  .57612239  1.0039619 
 C3  .58495502  .63996449  1.0378201 
 

Once derived S(t), its eigenvalues and the relative eigenvectors have to be calculated: 

 matrix symeigen eigenvectors eigenvalues = ST 
 
 mat list eigenvalues 
  
 eigenvalues[1,3] 
             e1          e2            e3 
 r1   2.216949  .44864888  .38048445 
 
In this case there is only one eigenvalues greater than one. The explained variability by each of 

them is given by: 

 mat D= diag(eigenvalues) 
 
 mat explained_variability = eigenvalues/trace(D) 
 
 mat list explained_variability 
 
 explained_variability[1,3] 
            e1          e2          e3 
 r1  .72780337  .14728718  .12490945 
 
So the first eigenvector associated to the first eigenvalues embodies more than the 70% of total 

variability of matrix ST. The cumulative proportion of explained variability is given by: 

 mat cumulative_variability = explained_variability 
 
 forvalues i=2/3 { 
  mat cumulative_variability[1,`i'] = cumulative_variability[1,`i'] + cumulative_variability[1,`i'-1] 
 } 
 
 mat list cumulative_variability 
 
 cumulative_variability[1,3] 
             e1          e2          e3 
 r1  .72780337  .87509055          1 
 
The eigenvectors of the matrix ST are the following: 

 mat list eigenvectors 
 
 eigenvectors[3,3] 
              e1           e2           e3 
 C1   .56063818   .82671191  -.04724664 
 C2   .57874153  -.35039072   .73639975 
 C3   .59223566  -.44019741  -.67489493 
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The generic unit i may be represented in the common factorial space through its scores on the 

derived axes: 

( ) hiihc azz    '  . ⋅−= ,        (7) 

where ∑
=

=
T

t
iti T 1

1 zz , i = 1…I, ∑
=

=
I

i
iI 1

1. zz and ( )iJttiit zzz ,...,' 1= , i = 1…I, t = 1…T. 

The vector of overall averages . z  is given by: 

 mat overall_average= J(1,1,0) 
 
 foreach i of varlist  zvar1 zvar2 zvar3{ 
  mat Q=diag( `i') 
  mat overall_average = overall_average,trace(Q)/rowsof(Q) 
 } 
 
 mat overall_average = overall_average[1...,2...] 
 
 mat list overall_average 
 
 overall_average[1,3] 
              c2           c3           c4 
 r1   1.688e-09   7.323e-10  -5.453e-09 
 

Of course the overall average of the variables is equal to zero because of the initial standardization. 

The vector of the average of each unit in the sample iz  is given by: 

 mat zi=J(1,3,0) 
 
 forvalues i = 1/13 { 
  mat z=J(1,3,0) 
    forvalues k = `i'(13)117 { 
     mat z =z+A[`k',1...] 
  } 
  mat z=z/7 
  mat zi= zi \z 
 } 
 
 mat zi = zi[2...,1...] 
 
 mat list zi 
 
 zi[13,3] 
                c1          c2           c3 
 r105  -.36437429  -1.3176396  -1.2938373 
  r93   .70310751  -1.1905136  -1.1370869 
 r94   .49662875  -.59518197   .70766644 
  r95  -.15924507  -.05556321  -.43400007 
  r96  -.26855738   -.6270179   .52494324 
  r97  -2.0418458  -1.3863045  -1.2279188 
  r98   .02294206   1.2751781    1.139758 
  r99  -.14709928    .2436944   .03185565 
 r100  -2.1147206  -1.4738533  -1.5524952 
 r101   1.3711271   .18957337   1.2259558 
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 r102   .25371259    1.143059    2.170599 
 r103  -.40216129   1.0698365  -.69744799 
 r104   1.6140432   1.7192891   .07921359 
 
The final computing of the scores is given by: 

 mat ci=J(1,3,0) 
 
 forvalues i=1/13 { 
  mat cih=(zi[`i',1...]-overall_average)*eigenvectors 
    mat ci = ci\cih 
 } 
 
 mat ci = ci[2...,1...] 
 
 mat list ci 
 
 ci[13,3] 
              c1           c2           c3 
 r1  -1.7331115   .72999996  -.07988977 
 r1  -.96823416    1.498955   -.1424992 
 r1   .35307782    .3076022  -.93935639 
 r1  -.37846592   .07886474   .25951151 
 r1  -.20255471  -.23339699  -.80332892 
 r1   -2.674266  -.66174332  -.09568771 

r1   1.4258661  -.92956265   .16873999 
 r1   .07743265  -.22101976   .16490722 
 r1  -2.9580162  -.54843588   .06233938 
 r1   1.6044749   .52743983  -.75257069 
 r1   2.0892828  -1.1462621  -.63516497 
 r1  -.01936173  -.40031752   1.2775322 
 r1   1.9468314   .69705619   1.1363651 
 
The derived scores allow us to represent the static structure of the units: 

 svmat ci 
 
 twoway (scatter ci2 ci1, mlabel(country)) 
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The diferential dynamic of the units is expressed by the “trajectories” traced by each unit on the 

common factorial space: they are given by the scores at each time t: 

( ) hitihtc azz    '  .  t ⋅−= , h = 1…k, t = 1…T,     (8) 

where ∑
=

=
I

i
itt I 1

1. zz . The matrix t. z  of the average of the variables for each time t is given by: 

 mat zt = J(1,3,0) 
 
 forvalues t=1(13)117{ 
    mat z2=J(1,3,0) 
    local t2=`t'+12 
    forvalues k=`t'/`t2' { 
     mat z2= z2+A[`k',1...] 
  } 
    mat z2= z2/13 
    mat zt=zt\z2 
 } 
 
 mat zt=zt[2...,1...] 
 
 mat list zt 
 
 zt[9,3] 
               c1           c2           c3 
  r13  -.23253518  -.31561093  -.27603422 
  r26  -.18675477   -.2478984  -.26258295 
  r39  -.21945506  -.20847082  -.15207311 
  r52  -.18021475  -.14932952  -.07305269 
  r65  -.09519413  -.06447453   .06276746 
  r78  -.04287366   .03409439   .15785342 
  r91   .11408752   .16351963   .19599714 
 r104   .29720904   .31351571   .16814389 
 r117   .54573101   .47465448     .178981 
 
 
The computation of the trajectories of each unit is given by: 

 forvalues i = 1/13 { 
   mat unit`i' = J(1,3,0) 
     forvalues k = `i'(13)117 { 
      mat cht = A[`k',1...] 
      mat unit`i' = unit`i' \ cht 
     } 
    mat unit`i' = unit`i'[2...,1...] 
    mat unit`i'= (unit`i'-zt)*eigenvectors 
    mat list unit`i' 
 } 
  
 unit1[9,3] 
               e1           e2           e3 
 r13   -1.034368   .67919196  -.11281426 
  r26  -1.1414165   .49211058  -.08860214 
  r39  -1.0445375   .57488974   .01781159 
  r52  -1.1526866   .60176445    .0352827 
  r65  -1.2825544   .69241238   .08038011 
  r78  -1.4126207   .60867353  -.02135901 



 9

  r91  -1.5644423    .6199642  -.10268546 
 r104  -1.6797483   .47400546  -.14902313 
 r117  -1.8194063   .36698745  -.21821881 
 
 ... 
 
 unit13[9,3] 
              e1          e2          e3 
  r13  1.9338931  .58829222  1.1275012 
  r26  1.7309441  .56131935  1.0157729 
  r39   1.656433  .55027825  1.0457995 
  r52  1.7034963  .67055284  .94033538 
  r65  1.8528796  .66913385  .88860325 
  r78  1.8726567  .80361414  .98476942 
  r91  1.7937259  .67278811   1.081159 
 r104  1.7704496  .56947539  1.0735729 
 r117  1.8054068  .85680889  .97912953 
 

Because the power of explanation of the total variability of the first component is satisfactory, the 

scores of each unit for each time t on the first axis provide the wanted overall innovation index. For 

a graphical representation of the trajectories a trend variable is needed: 

 mat t=J(9,1,1) 
 
 forvalues i=2/9 { 
    mat t[`i',1]= t[`i',1]+ t[`i'-1,1] 
 } 
 
 svmat t 
 
Now is possible to compile a graph for the trajectory of each country: 

 forvalues i = 1/13 { 
  twoway (line unit`i'1 t), xtitle(, size(zero) color(ltbluishgray)) legend(off) nodraw 
  graph save unit`i', replace 
 } 
 
The combined graph is the following: 

gr combine unit1.gph unit2.gph unit3.gph unit4.gph unit5.gph unit6.gph unit7.gph unit8.gph 
unit9.gph unit10.gph unit11.gph unit12.gph unit13.gph, xcom ycom  
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The best performances are for units 7 (Japan), 10 (Sweden), 11 (Switzerland) and 13 (United 

States), which show the highest values on the first components for all the considered times. 

As regards the average dynamic of the system we consider the matrix *ST, regressing over time the 

average value of the single variables for each time t4: 

  svmat zt 
   
  forvalues i=1/3 { 
   regress zt`i' t 
  } 
 
        Source  |       SS        df       MS               Number of obs  =       7 
  ------------+------------------------------              F(  1,     5)   =   22.52 
        Model   |  .075285295     1  .075285295            Prob > F        =  0.0051 
      Residual  |  .016711732     5  .003342346            R-squared       =  0.8183 
  -------------+------------------------------             Adj R-squared  =  0.7820 
        Total   |  .091997027     6  .015332838            Root MSE        =  .05781 
 
  ------------------------------------------------------------------------------ 
          zt1    |      Coef.     Std. Err.      t     P>|t|      [95% Conf. Interval] 
  -------------+---------------------------------------------------------------- 
           t1    |   .0518533    .0109256     4.75   0.005      .023768    .0799385 
        _cons   |   -.327833    .0488609    -6.71   0.001     -.4534341    -.202232 
  ------------------------------------------------------------------------------ 
 
The high value of the (adjusted) R-squared show that the average dynamic of the system is well 

captured by the proposed model. 

                                                 
4 In order to save space, only the result of the regression relative to the first variable is reported. The results of the other 
two regressions are available upon request and their quality (proxied by the value of the (adjusted) R- 
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As regards the quality of the representation of the factorial structure with respect the observed 

overall variability for each time t, we can compute the following index: 

[ ])(tr

 )('
)( 1

t

t
tI

k

h
hh

S

aSa∑
== .        (9) 

For a global assessment of the esplicative power of the Model 1 of Dynamic Factor Analysis with 

respect the variability of the matrix ST, we can compute the following index: 

[ ]T

k

h
hTh

TI
S

aSa

tr

 '
1
∑
== .        (10) 

As regards the first series of indexes, we can recall the initial procedure adopted for the 

computation of the matrix ST. First of all the computation of the single eigenvectors is needed: 

 forvalues i=1/3 { 
  mat e`i' = J(3,1,0) 
 } 
 
 forvalues i=1/3 { 
  forvalues j=1/3 { 
     mat e`i'[`j',1]=eigenvectors[`j',`i'] 
    } 
 } 
 
Then we can compute the series of indexes I(t): 

 local t=1 
 
 matrix ST=J(3,3,0) 
 
 forvalues i=1(13)117 { 
  matrix num = J(1,1,0) 
    matrix C=A[`i'..(`i'+13-1),1...] 
    svmat C 
    matrix accum cov = C1-C3, deviations noconstant 
    matrix cov=cov/(r(N)-1) 
    matrix ST=ST+cov 
    drop C1-C3 
    forvalues k = 1/3 { 
    mat num = num + (e`k'' * cov * e`k') 
   } 
   mat I_`t' = num/trace(cov) 
   mat list I_`t' 
   local t =`t'+1 
 } 
 

Then for the global index IT: 

 mat ST=ST/7 
 



 12

 matrix numIT = J(1,1,0) 
 
 forvalues k=1/3 { 
  mat numIT = numIT + (e`k'' * ST  * e`k') 
 } 
 
 mat IT = (numIT)/trace(ST) 
 
 mat list IT 
 

All the computed indexes we derive show the highest value of 1: it is likely that it is due to the low 

number of the considered units, variables and years in this instructive application. Anyway we can 

conclude that the fit of the Model 1 of Dynamic Factor Analysis to the considered data is highly 

satisfactory and provide useful insights about the innovative performance of the sampled countries 

over time when the three considered variables are jointly analysed. 

 

4. Conclusions  

Regardless the specific economic field chosen for the application in this paper, the Dynamic Factor 

Analysis may be applied in the case of a higher number of units, variables and years. The presented 

methodology is a powerful statistical framework for the analysis of three-dimensions arrays, that is 

the assessment of the behaviour of a sample of units over time when a given number of correlated 

variables are jointly considered. 

For this reason, even if the Dynamic Factor Analysis is a not well known technique yet (at least in 

the Anglo-Saxon literature), its application in a wide range of sectors is growing, as for example in 

the economic, biomedical and environmental fields. 
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