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Installation

Installation 1
1.1 UNIX/Linux/Mac

If you are unfamiliar with UNIX/Linux/Mac, see your system administrator or system
documentation for information on the system commands referred to below.

1.1.1 Download

1. Copy the .tar.gz or .zip file to /tmp.

2. If the file has a .tar.gz extension, unzip it using gunzip. Otherwise skip to step 3.

gunzip app_appname_vernum.revnum_UNIX.tar.gz

3. cd to your GAUSS or GAUSS Engine installation directory. We are assuming
/usr/local/gauss in this case.

cd /usr/local/gauss
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4. Use tar or unzip, depending on the file name extension, to extract the file.

tar xvf /tmp/app_appname_vernum.revnum_UNIX.tar
– or –
unzip /tmp/app_appname_vernum.revnum_UNIX.zip

1.1.2 CD

1. Insert the Apps CD into your machine’s CD-ROM drive.

2. Open a terminal window.

3. cd to your current GAUSS or GAUSS Engine installation directory. We are
assuming /usr/local/gauss in this case.

cd /usr/local/gauss

4. Use tar or unzip, depending on the file name extensions, to extract the files found
on the CD. For example:

tar xvf /cdrom/apps/app_appname_vernum.revnum_UNIX.tar
– or –
unzip /cdrom/apps/app_appname_vernum.revnum_UNIX.zip

However, note that the paths may be different on your machine.

1.2 Windows

1.2.1 Download

Unzip the .zip file into your GAUSS or GAUSS Engine installation directory.

1.2.2 CD

1. Insert the Apps CD into your machine’s CD-ROM drive.

1-2
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Installation

2. Unzip the .zip files found on the CD to your GAUSS or GAUSS Engine
installation directory.

1.2.3 64-Bit Windows

If you have both the 64-bit version of GAUSS and the 32-bit Companion Edition installed
on your machine, you need to install any GAUSS applications you own in both GAUSS
installation directories.

1.3 Difference Between the UNIX and Windows Versions

• If the functions can be controlled during execution by entering keystrokes from the
keyboard, it may be necessary to press ENTER after the keystroke in the UNIX
version.

1-3
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Getting Started 2
2.1 Getting Started

GAUSS 10.0.0+ is required to use these routines. See _rtl_ver in src/gauss.dec.

2.1.1 Setup

In order to use the procedures in the Constrained Optimization MT module, the COMT
library must be active. This is done by including comt in the library statement at the top
of your program or command file:

library comt,pgraph;

This enables GAUSS to find the COMT procedures. The statement
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#include comt.sdf

is also required. It sets the definitions of the structures used by COMT.

The COMT version number is stored in a global variable:

_comt_ver 3×1 matrix, the first element contains the major version number of the
COMT Module, the second element the minor version number, and the
third element the revision number.

If you call for technical support, you may be asked for the version number of your copy of
this module.

2.1.2 README Files

If it exists, the file README.comt contains any last minute information on the
Constrained Optimization MT procedures. Please read it before using them.

2-2



C
O

M
T

Constrained Optimization MT 3
written by

Ronald Schoenberg

This module contains a set of procedures for the solution of the constrained optimization
problem.

3.1 Special Features in Constrained Optimization MT

3.1.1 Structures

In COMT the same procedure that computes the objective function will also be used to
compute analytical derivatives if they are being provided. Its return argument is a
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comtResults structure with three members: a scalar function value, a K×1 vector of first
derivatives, and a K×K matrix of second derivatives. Of course, the derivatives are
optional, or even partially optional, i.e., you can compute a subset of the derivatives, if
you like, and the remaining will be computed numerically. This procedure will have an
additional argument, which tells the function whether to compute the log-likelihood or
objective, the first derivatives, the second derivatives, or all three. This means that
calculations in common will not have to be redone.

The new COMT uses the DS and PV structures, which are in the GAUSS Run-Time
Library. The DS structure is completely flexible, allowing you to pass anything you can
think of into your procedure. The PV structure revolutionizes how you pass the parameters
into the procedure. No longer do you have to struggle to get the parameter vector into
matrices for calculating the function and its derivatives, trying to remember or figure out
which parameter is where in the vector. If your log-likelihood function uses matrices or
arrays, you can store them directly into the PV structure and remove them as matrices or
arrays with the parameters already plugged into them. The PV structure can handle
matrices and arrays in which some of the elements are fixed and some free. It remembers
the fixed parameters and knows where to plug in the current values of the free parameters.
It can also handle symmetric matrices, in which parameters below the diagonal are
repeated above the diagonal.

There is no longer any need to use global variables. Anything the procedure needs can be
passed into it through the DS structure, and COMT uses control structures rather than
global variables to set options. This means, in addition to thread safety, that it is
straightforward to nest a call to COMT inside another call to COMT or inside Run-Time
Library functions like QNewtonmt, QProgmt, and EQsolvemt.

3.1.2 Threading

If you have a multi-core processor in your computer, you may take advantage of this
capability by turning on the threading option. This is done by setting the useThreads
member of the comtControl structure:
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struct comtControl c0;

c0 = comtControlCreate;

c0.useThreads = 1;

An important advantage of threading occurs in computing numerical derivatives. If the
derivatives are computed numerically, threading will significantly decrease the
computation time.

3.1.3 Augmented Lagrangian Penalty Line Search Method

An augmented Lagrangian penalty method with second order correction, described by
Conn, Gould, and Toint (2000), Section 15.3.1, is implemented in COMT.

3.2 The Objective Function

COMT is a set of procedures for estimating the parameters of models via the optimization
method with general constraints on the parameters

min F(θ)

subject to the linear constraints

A(θ) = B

C(θ) ≥ D

the nonlinear constraints
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G(θ) = 0

H(θ) ≥ 0

and bounds

θl ≤ θ ≤ θu

G(θ) and H(θ) are functions provided by the user and must be differentiable at least once
with respect to θ.

3.3 Algorithm

COMT uses the Sequential Quadratic Programming method. In this method the
parameters are updated in a series of iterations, beginning with starting values that you
provide. Let θt be the current parameter values. Then the succeeding values are

θt+1 = θt + ρδ

where δ is a K × 1 direction vector, and ρ a scalar step length.

Direction

Define
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Σ(θ) =
∂2L
∂θ∂θ′

Ψ(θ) =
∂L
∂θ

and the Jacobians

Ġ(θ) =
∂G(θ)
∂θ

Ḣ(θ) =
∂H(θ)
∂θ

For the purposes of this exposition, and without loss of generality, we may assume that the
linear constraints and bounds have been incorporated into G and H.

The direction, δ is the solution to the quadratic program

minimize
1
2
δ′Σ(θt)δ + Ψ(θt)δ

sub ject to Ġ(θt)δ +G(θt) = 0

Ḣ(θt)δ + H(θt) ≥ 0

This solution requires that Σ be positive semi-definite.
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In practice, linear constraints are specified separately from the G and H because their
Jacobians are known and easy to compute, and the bounds are more easily handled
separately from the linear inequality constraints.

Line Search

Define the merit function

m(θ) = L −
∑

j

κ jg j(θ) −
∑
`

λ`h`(θ)) +
1

2µ
(‖g j(θ)‖22 + ‖h j(θ)‖22)

where g j is the j-th row of G, h` is the `-th row of H, κ is the vector of Lagrangean
coefficients of the equality constraints, and λ the vector of Lagrangean coefficients of the
inequality constraints.

The line search finds a value of ρ that minimizes or decreases m(θt + ρδ).

The penalty coefficient µ increases at each iteration. The amount of increase in this
coefficient is set by the Penalty member of the instance of the comtControl structure.

Trust Radius

By default a “trust radius” is set around all of the parameters being estimated. Constraints
are set for each parameter that bounds the new direction ensuring the iterations against
extreme movements in the estimates. This provides for safer iterations but can add to the
total number of iterations to convergence. To turn this off, set the TrustRadius member
of the instance of the comtControl structure.
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3.3.1 The Secant Algorithms

The Hessian may be very expensive to compute at every iteration, and poor start values
may produce an ill-conditioned Hessian. For these reasons alternative algorithms are
provided in COMT for updating the Hessian rather than computing it directly at each
iteration. These algorithms, as well as step length methods, may be modified during the
execution of COMT.

Beginning with an initial estimate of the Hessian, or a conformable identity matrix, an
update is calculated. The update at each iteration adds more “information” to the estimate
of the Hessian, improving its ability to project the direction of the descent. Thus after
several iterations the secant algorithm should do nearly as well as Newton iteration with
much less computation.

There are two basic types of secant methods, the BFGS (Broyden, Fletcher, Goldfarb, and
Shanno), and the DFP (Davidon, Fletcher, and Powell). They are both rank two updates,
that is, they are analogous to adding two rows of new data to a previously computed
moment matrix. The Cholesky factorization of the estimate of the Hessian is updated
using the functions CHOLUP and CHOLDN.

Secant Methods (BFGS and DFP)

BFGS is the method of Broyden, Fletcher, Goldfarb, and Shanno, and DFP is the method
of Davidon, Fletcher, and Powell. These methods are complementary (Luenberger 1984,
page 268). BFGS and DFP are like the NEWTON method in that they use both first and
second derivative information. However, in DFP and BFGS the Hessian is approximated,
reducing considerably the computational requirements. Because they do not explicitly
calculate the second derivatives, they are sometimes called quasi-Newton methods. While
it takes more iterations than the NEWTON method, the use of an approximation produces
a gain because it can be expected to converge in less overall time (unless analytical second
derivatives are available in which case it might be a toss-up).

The secant methods are commonly implemented as updates of the inverse of the Hessian.
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This is not the best method numerically for the BFGS algorithm (Gill and Murray, 1972).
This version of COMT, following Gill and Murray (1972), updates the Cholesky
factorization of the Hessian instead, using the functions CHOLUP and CHOLDN for BFGS.
The new direction is then computed using CHOLSOL, a Cholesky solve, as applied to the
updated Cholesky factorization of the Hessian and the gradient.

3.3.2 Line Search Methods

Given a direction vector d, the updated estimate of the parameters is computed

θt+1 = θt + ρδ

where ρ is a constant, usually called the step length, that increases the descent of the
function given the direction. COMT includes a variety of methods for computing ρ. The
value of the function to be minimized as a function of ρ is

m(θt + ρδ)

Given θ and d, this is a function of a single variable ρ. Line search methods attempt to find
a value for ρ that decreases m. STEPBT is a polynomial fitting method, BRENT and
HALF are iterative search methods. A fourth method called ONE forces a step length of 1.
The default line search method is STEPBT. If this or any selected method fails, then
BRENT is tried. If BRENT fails, then HALF is tried. If all of the line search methods fail,
then a random search is tried, provided the RandRadius member of the comtControl
instance is greater than zero which it is by default.

Augmented Penalty Line Search Method

When the LineSearch member of the instance of the comtControl structure is set to
zero, COMT uses an “augmented Lagrangian penalty” method for the line search
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described in Conn, Gould, and Toint (2000). The Hessian and gradient for the Quadratic
Programming problem in the SQP method is augmented as described in their Section
15.3.1. This method requires that constraints be imposed on the parameters. This method
is not available for solving optimization problems without constraints on parameters.

STEPBT

STEPBT is an implementation of a similarly named algorithm described in Dennis and
Schnabel (1983). It first attempts to fit a quadratic function to m(θt + ρδ) and computes an
ρ that minimizes the quadratic. If that fails, it attempts to fit a cubic function. The cubic
function more accurately portrays the F which is not likely to be very quadratic, but is,
however, more costly to compute. STEPBT is the default line search method because it
generally produces the best results for the least cost in computational resources.

BRENT

This method is a variation on the golden section method due to Brent (1972). In this
method, the function is evaluated at a sequence of test values for ρ. These test values are
determined by extrapolation and interpolation using the constant, (

√
5 − 1)/2 = .6180....

This constant is the inverse of the so-called “golden ratio” ((
√

5 + 1)/2 = 1.6180... and is
why the method is called a golden section method. This method is generally more efficient
than STEPBT but requires significantly more function evaluations.

HALF

This method first computes m(x + d), i.e., sets ρ = 1. If m(x + d) < m(x) then the step
length is set to 1. If not, then it tries m(x + .5d). The attempted step length is divided by
one half each time the function fails to decrease and exits with the current value when it
does decrease. This method usually requires the fewest function evaluations (it often only
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requires one), but it is the least efficient in that it is not very likely to find the step length
that decreases m the most.

3.3.3 Active and Inactive Parameters

The member Active of the instance of the comtControl structure may be used to fix
parameters to their start values. This allows estimation of different models without having
to modify the function procedure. Active must be set to a vector of the same length as the
vector of start values. Elements of Active set to zero are fixed to their starting values
while nonzero elements are estimated.

This feature may also be used for model testing. NumObs times the difference between the
function values from the two estimations is chi-squared distributed with degrees of
freedom equal to the number of fixed parameters in Active.

3.4 Constraints

There are two general types of constraints, nonlinear equality constraints and nonlinear
inequality constraints. However, for computational convenience they are divided into five
types: linear equality, linear inequality, nonlinear equality, nonlinear inequality, and
bounds.

3.4.1 Linear Equality Constraints

Linear constraints are of the form:

Aθ = B

where A is an m1 × k matrix of known constants and B an m1 × 1 vector of known
constants, and θ the vector of parameters.
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The specification of linear equality constraints is done by assigning the A and B matrices
to members, A and B, of an instance of a comtControl structure. For example, to
constrain the first of four parameters to be equal to the third,

struct comtControl ctl;

ctl = comtControlCreate;

ctl.A = { 1 0 -1 0 };

ctl.B = { 0 };

3.4.2 Linear Inequality Constraints

Linear constraints are of the form:

Cθ ≥ D

where C is an m2 × k matrix of known constants, D an m2 × 1 vector of known constants,
and θ the vector of parameters.

The specification of linear equality constraints is done by assigning the C and D matrices
to members, C and D, of an instance of a comtControl structure. For example, to
constrain the first of four parameters to be greater than the third, and as well the second
plus the fourth greater than 10:

struct comtControl ctl;

ctl = comtControlCreate;

ctl.C = { 1 0 -1 0,

0 1 0 1 };

ctl.D = { 0,

10 };
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3.4.3 Nonlinear Equality

Nonlinear equality constraints are of the form:

G(θ) = 0

where θ is the vector of parameters, and G(θ) is an arbitrary, user-supplied function.
Nonlinear equality constraints are specified by assigning the procedure pointer to the
EqProc member of an instance of the comtControl structure. This procedure has two
input arguments, a PV structure containing the parameters and a DS structure containing
data.

For example, suppose you wish to constrain the norm of the parameters to be equal to 1:

struct comtControl ctl;

ctl = comtControlCreate;

proc eqp(struct PV p, struct DS d);

local b;

b = pvUnpack("coefficients");

retp(b’b - 1);

endp;

ctl.eqProc = &eqp;

3.4.4 Nonlinear Inequality

Nonlinear inequality constraints are of the form:

H(θ) ≥ 0
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where θ is the vector of parameters, and H(θ) is an arbitrary, user-supplied function.
Nonlinear equality constraints are specified by assigning the pointer to the IneqProc
member of an instance of the comtControl structure. This procedure has two input
arguments, a PV structure containing the parameters and a DS structure containing data.

For example, suppose you wish to constrain a covariance matrix to be positive definite

proc ineqp(struct PV p, struct DS d);

local v;

v = pvUnpack("covariance");

retp(minc(eigh(v)) - 1e-5);

endp;

ctl.IneqProc = &ineqp;

This constrains the minimum eigenvalue of the covariance matrix to be greater than a
small number (1e-5). This guarantees the covariance matrix to be positive definite.

3.4.5 Bounds

Bounds are a type of linear inequality constraint. For computational convenience they
may be specified separately from the other inequality constraints. To specify bounds, the
lower and upper bounds respectively are entered in the first and second columns of a
matrix that has the same number of rows as the parameter vector. This matrix is assigned
to the Bounds member of an instance of a comtControl structure.

If the bounds are the same for all of the parameters, only the first row is necessary.

To bound four parameters:

struct comtControl ctl;

ctl = comtControlCreate;

ctl.Bounds = { -10 10,
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-10 0,

1 10,

0 1 };

Suppose all of the parameters are to be bounded between -50 and +50. Then,

ctl.Bounds = { -50 50 };

is all that is necessary.

3.5 The COMT Procedure

The call to COMT has four input arguments and one output argument.

3.5.1 First Input Argument: Pointer to Procedure

The first input argument is the pointer to the procedure computing the log-likelihood
function and optionally the gradient and/or Hessian. See Section 3.6 for details.

3.5.2 Second Input Argument: PV Parameter Instance

The GAUSS Run-Time Library contains special functions that work with the PV
structure. They are prefixed by “pv” and defined in pv.src. These functions store
matrices and arrays with parameters in the structure, and retrieve the original matrices and
arrays along with various kinds of information about the parameters and parameter vector
from it.

The advantage of the PV structure is that it permits you to retrieve the parameters in the
form of matrices and/or arrays ready for use in calculating your log-likelihood. The
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matrices and arrays are defined in your command file when the start values are set up. It
isn’t necessary that a matrix or array be completely free parameters to be estimated. There
are pvPack functions that take mask arguments defining what is a parameter versus what
is a fixed value. There are also functions for handling symmetric matrices where the
parameters below the diagonal are duplicated above the diagonal.

For example, a PV structure is created in your command file:

struct PV p;

p = pvCreate; // creates default structure

garch = { .1, .1, .1 };

p = pvPack(p,garch,"garch");

A matrix or array in the model may contain a mixture of fixed values along with
parameters to be estimated. This type of matrix or array uses pvPackm which has an
additional argument, called a “mask”, strictly conformable to the input matrix or array
indicating which elements are fixed (the corresponding element in the mask is zero) or
being estimated (the corresponding element in the mask is nonzero). For example,

struct PV p;

p = pvCreate;

b = { 1.0 0.0 0.0,

0.5 1.0 0.2,

0.3 0.0 1.0 };

b_mask = { 0 0 0,

1 0 1,

1 0 1 };

p = pvPackm(p,b,"beta",b_mask);
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In this case there are four free parameters to be estimated, b21, b23, b31, and b33. b11 and
b22 are fixed to 1.0, and b22, b23, and b32 are fixed to 0.0.

pvPacks “packs” a symmetric matrix into the PV structure in which only the lower left
portion of the matrix contains independent parameters while the upper left is duplicated
from the lower left. The following packed matrix contains three nonredundant parameters.
When this matrix is unpacked, it will contain the upper nonredundant portion of the
matrix equal to the lower portion.

vc = { 1.2 0.4,

0.4 2.1 };

p = pvPacks(p,vc,"phi"); // pack symmetric matrix

Suppose that you wish to specify a correlation matrix in which only the correlations are
free parameters. You would then use pvPacksm.

cor = { 1.0 0.2,

0.2 1.0 };

msk = { 0 1,

1 0 };

pv = pvPacksm(p,cor,msk,"R");

Some computation speedup can be achieved by packing and unpacking by number rather
than name. Each packing function has a version with an i suffix that packs by number.
Then pvUnpack can be used with that number:

garch = { .1, .1, .1 };

p = pvPacki(p,garch,"garch",1);

which is unpacked using its number

g0 = pvUnpack(1);
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3.5.3 Third Input Argument: DS Data Instance

The DS structure, or “data” structure, is a very simple structure. It contains a member for
each GAUSS data type. This is its definition (see ds.sdf in the GAUSS src
subdirectory):

struct DS {

scalar type;

matrix dataMatrix;

array dataArray;

string dname;

string array vnames;

};

Data in Matrices or Arrays

If you are passing your data in as matrices or arrays, you can set the data structure in any
way you want except that the dname member of the first element of the data structure must
be a null string. COMT will pass this instance or a matrix of instances to your
log-likelihood procedure untouched. For example

struct DS d0;

d0 = reshape(dsCreate,2,1);

d0[1].DataMatrix = y;

d0[2].DataMatrix = x;

3.5.4 Fourth Input Argument: comtControl Instance

The members of the comtControl instance determine everything about the optimization.
For example, suppose you want COMT to stop after 100 iterations:
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struct comtControl c0;

c0 = comtControlCreate;

c0.maxIters = 100;

The comtControlCreate procedure sets all of the defaults. The default values for all the
members of a comtControl instance can be found in that procedure, located at the top of
comtutil.src in the GAUSS src subdirectory.

3.6 The Objective Procedure

COMT requires that you write a procedure computing the objective function. The output
from this procedure is a modelResults structure containing the value of the objective
function and optionally the first and second derivatives of the objective function with
respect to the parameters. There are three input arguments to this procedure

1. instance of a PV structure containing parameter values

2. instance of a DS structure containing data

3. indicator vector

and one return argument

1. instance of a modelResults structure containing computational results.

3.6.1 First Input Argument: PV Parameter Instance

This argument contains the parameter matrices and arrays that you need for computing the
log-likelihood and (optionally) derivatives. The pvUnpack function retrieves them from
the PV instance.
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proc lpr(struct PV p, struct DS d, ind);

local beta, gamma;

beta = pvUnpack("beta");

gamma = pvUnpack("gamma");

.

.

.

endp;

You may have decided to speed the program up a bit by packing the matrices or arrays
using the “i” pack functions, pvPacki, pvPackmi, pvPacksi, etc., You can then unpack
the matrices and arrays with the integers used in packing them:

proc lpr(struct PV p, struct DS d, ind);

local beta, gamma;

beta = pvUnpack(1);

gamma = pvUnpack(2);

.

.

.

endp;

where it has been assumed that they’ve been packed accordingly:

struct PV p;

p = pvCreate;

p = pvPacki(p,1.|.1,"beta",1);

p = pvPacksi(p,(1˜0)|(0˜1),"gamma",2);
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3.6.2 Second Input Argument: DS Data Instance

COMT passes the DS instance you have constructed completely untouched. You can,
therefore, design this instance completely for your convenience in computing the objective
function and optionally its derivatives.

3.6.3 Third Input Argument: Indicator Vector

The third argument is a vector with elements set to zero or one, indicating whether or not
function, first derivatives, or second derivatives are to be computed.

1st element if nonzero, the function is to be computed.

2nd element if nonzero, the first derivatives are to be computed.

3rd element if nonzero, the second derivatives are to be computed.

The second and third elements associated with the first and second derivatives are optional.

For example,

proc logl( struct PV p0, struct DS d0, ind );

local b0,b,y,x;

b0 = pvUnpack(p0,"b0");

b = pvUnpack(p0,"beta");

y = d0[1].DataMatrix;

x = d0[2].DataMatrix;

struct modelResults mm;

if ind[1]; // compute log-likelihood

mm.Function = ....

endif;

if ind[2]; // compute optional first derivatives
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mm.Gradient = ....

endif;

if ind[3]; // compute optional second derivatives

mm.Hessian = ....

endif;

retp(mm);

endp;

If mm.Gradient and mm.Hessian are not set, they will be computed numerically by
COMT.

3.6.4 Output Argument: modelResults Instance

The return argument for your objective function procedure is an instance of a
modelResults structure. The members of this structure are

Function scalar value of objective function given parameters

Gradient 1 × K vector of first derivatives (optional)

Hessian K × K matrix of second derivatives (optional)

3.6.5 Examples

#include comt.sdf

struct DS d0;

d0 = reshape(d0,2,1);

d0[1].dataMatrix =

library comt;

{ 0.78 -0.02 -0.12 -0.14,
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-0.02 0.86 -0.04 0.06,

-0.12 -0.04 0.72 -0.08,

-0.14 0.06 -0.08 0.74 };

d0[2].dataMatrix = { 0.76, 0.08, 1.12, 0.68 };

struct PV p0;

p0 = pvPack(pvCreate,1|1|1|1,"x");

struct comtControl c0;

c0 = comtControlCreate;

c0.useThreads = 1;

proc qfct(struct PV p, struct DS d, ind);

local x,q,b;

struct modelResults mm;

x = pvUnpack(p,"x");

q = d[1].dataMatrix;

b = d[2].dataMatrix;

if ind[1];

mm.function = .5*x’*q*x - x’b;

endif;

retp(mm);

endp;

output file = comt1.out reset;

struct comtResults out;

out = comt(&qfct,p0,d0,c0);

call comtPrt(out);

output off;
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library comt;

#include comt.sdf

/* -- data -- */

nldat = loadd("nlin");

struct DS d0;

d0 = reshape(d0,2,1);

d0[1].dataMatrix = nldat[.,1];

d0[2].dataMatrix = nldat[.,2];

struct PV p0;

p0 = pvPack(pvCreate,.8|1.1|.2,"B");

proc ssq(struct PV p, struct DS d, ind);

struct modelResults mm;

local y,dev;

y = d[1].dataMatrix;

dev = y - fct(p,d);

if ind[1];

mm.function = dev’dev;

endif;

retp(mm);

endp;

proc fct(struct PV p, struct DS d);

local x,b,f;

b = pvUnpack(p,"B");

x = d[2].dataMatrix;

f = b[1] + b[2] * exp(-b[3]*x);

3-23



Constrained Optimization MT 1.0 for GAUSS

retp(f);

endp;

proc ineqp(struct PV p, struct DS d); // constrains norm

local b; // of coefficients

b = pvUnpack(p,"B"); // to be less than

retp(2-b’b); // two

endp;

proc ineqj(struct PV p, struct DS d); // jacobian of

local b; // inequality

b = pvUnpack(p,"B"); // constraints

retp(-2*b’);

endp;

struct comtControl c0;

c0 = comtControlCreate;

c0.lineSearch = 3; // half

c0.ineqProc = &ineqp;

c0.ineqJacobian = &ineqj;

c0.gradcheck = 1;

output file = comt2.out reset;

struct comtResults out;

out = comt(&ssq,p0,d0,c0);

call comtPrt(out);

grd = gradmt(&fct,p0,d0);

cov = (out.fct/rows(d0[1].dataMatrix))*invpd(grd’*grd);

print "covariance matrix";

print cov;

print;

print "standard errors of parameters";

sd = sqrt(diag(cov));
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print sd’;

print;

print "t-statistics";

print (pvGetParVector(out.par)./sd)’;

output off;

3.7 Managing Optimization

The critical elements in optimization are scaling, starting point, and the condition of the
model. When the data are scaled, the starting point is reasonably close to the solution and
the data and model go together well, the iterations converge quickly and without difficulty.

For best results, therefore, you want to prepare the problem so that model is
well-specified, the data scaled and that a good starting point is available.

The tradeoff among algorithms and step length methods is between speed and demands on
the starting point and condition of the model. The less demanding methods are generally
time consuming and computationally intensive, whereas the quicker methods (either in
terms of time or number of iterations to convergence) are more sensitive to conditioning
and quality of starting point.

3.7.1 Scaling

For best performance, the diagonal elements of the Hessian matrix should be roughly
equal. If some diagonal elements contain numbers that are very large and/or very small
with respect to the others, COMT has difficulty converging. How to scale the diagonal
elements of the Hessian may not be obvious, but it may suffice to ensure that the constants
(or “data”) used in the model are about the same magnitude.
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3.7.2 Condition

The specification of the model can be measured by the condition of the Hessian. The
solution of the problem is found by searching for parameter values for which the gradient
is zero. If, however, the Jacobian of the gradient (i.e., the Hessian) is very small for a
particular parameter, then COMT has difficulty determining the optimal values since a
large region of the function appears virtually flat to COMT. When the Hessian has very
small elements, the inverse of the Hessian has very large elements and the search direction
gets buried in the large numbers.

Poor condition can be caused by bad scaling. It can also be caused by a poor specification
of the model or by bad data. Bad models and bad data are two sides of the same coin. If
the problem is highly nonlinear, it is important that data be available to describe the
features of the curve described by each of the parameters. For example, one of the
parameters of the Weibull function describes the shape of the curve as it approaches the
upper asymptote. If data are not available on that portion of the curve, then that parameter
is poorly estimated. The gradient of the function with respect to that parameter is very flat,
elements of the Hessian associated with that parameter is very small, and the inverse of
the Hessian contains very large numbers. In this case it is necessary to respecify the model
in a way that excludes that parameter.

3.7.3 Starting Point

When the model is not particularly well-defined, the starting point can be critical. When
the optimization doesn’t seem to be working, try different starting points. A closed form
solution may exist for a simpler problem with the same parameters. For example, ordinary
least squares estimates may be used for nonlinear least squares problems or nonlinear
regressions like probit or logit. There are no general methods for computing start values
and it may be necessary to attempt the estimation from a variety of starting points.
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3.7.4 Example

The following example illustrates the estimation of a tobit model with nonlinearly
inequality constraints and bounds on the parameters. The nonlinear inequality constraints
constrain the first coefficient to be greater than the constant and the product of the
coefficients to be less than one. The bounds are provided essentially to constrain the
variance parameter to be greater than zero.

library comt;

#include comt.sdf

struct DS d0;

d0 = reshape(d0,2,1);

d0[1].dataMatrix = {

109,

149,

149,

191,

213,

224 };

d0[2].dataMatrix = {

1,

2,

3,

5,

7,

10 };

struct PV p0;

p0 = pvPack(pvCreate, 100|0.75 ,"B");

proc ssq(struct PV p, struct DS d, ind);

struct modelResults mm;
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local y,f,g;

y = d[1].dataMatrix;

f = fct(p,d);

if ind[1];

mm.function = (y - f)’(y - f);

endif;

if ind[2];

g = grd(p,d);

mm.gradient = -2*g’(y-f);

endif;

retp(mm);

endp;

proc fct(struct PV p, struct DS d);

local b,x;

b = pvUnpack(p,"B");

x = d[2].dataMatrix;

retp( b[1]*(1 - exp(-b[2]*x)) );

endp;

proc grd(struct PV p, struct DS d);

local b,x,f,g;

b = pvUnpack(p,"B");

x = d[2].dataMatrix;

g = zeros(rows(x),rows(b));

f = exp(-b[2]*x);

g[.,1] = 1 - f;

g[.,2] = b[1]*x.*f;

retp(g);

endp;

struct comtControl c0;

c0 = comtControlCreate;
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c0.gradCheck = 1;

struct comtResults out;

out = comt(&ssq,p0,d0,c0);

call comtPrt(out);

g = grd(out.par,d0);

cov = (out.fct/rows(d0[1].dataMatrix))*invpd(g’*g);

print "covariance matrix";

print cov;

print;

print "standard errors of parameters";

sd = sqrt(diag(cov));

print sd’;

print;

print "t-statistics";

print (pvGetParVector(out.par)./sd)’;

and the output looks like this:

analytical gradient numerical gradient

-932.8196153813061100 -932.8196142625807900

-18609.6357937713840000 -18609.6358822984800000

============================================================

COMT Version 1.0.0 1/29/2010 2:59 pm

============================================================

return code = 0

normal convergence

Objective Function 1168.01

Parameters Estimates Gradient

------------------------------------------------------------
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B[1,1] 213.8094 0.0000

B[2,1] 0.5472 -0.0006

Number of iterations 3706

Minutes to convergence 0.01694

covariance matrix

101.75603 -0.62853681

-0.62853681 0.0072885202

standard errors of parameters

10.087419 0.085372831

t-statistics

21.195650 6.4099725

3.8 Run-Time Switches

If the user presses H during the iterations, a help table is printed to the screen which
describes the run-time switches. By this method, important global variables may be
modified during the iterations. The case may also be ignored, that is, either upper or lower
case letters suffice.

A Change Algorithm

C Force Exit

G Toggle GradMethod

H Help Table

O Set PrintIters

S Set line search method

T Set TrustRadius
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V Set DirTol

Keyboard polling can be turned off completely by setting the disableKey member of the
comtControl instance to a nonzero value.

3.9 COMT Structures

3.9.1 comtControl

matrix A

matrix B

matrix C

matrix D

scalar EqProc

scalar IneqProc

scalar IneqJacobian

scalar EqJacobian

matrix Bounds

matrix Algorithm

matrix Switch

matrix LineSearch

matrix Active

matrix MaxIters
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matrix DirTol

matrix FeasibleTest

matrix MaxTries

matrix RandRadius

matrix GradMethod

matrix HessMethod

matrix GradStep

matrix HessStep

matrix GradCheck

matrix State

string Title

scalar PrintIters

matrix TrustRadius

matrix Penalty

matrix DisableKey

3.9.2 comtResults

struct PV Par

scalar Fct

struct ComtLagrange lagr

scalar Retcode
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string ReturnDescription

matrix Hessian

matrix Gradient

matrix NumIterations

matrix ElapsedTime

string Title

3.9.3 comtLagrange

matrix Lineq

matrix Nlineq

matrix Linineq

matrix Nlinineq

matrix Bounds

3.9.4 modelResults

matrix Function

matrix Gradient

matrix Hessian
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3.10 Error Handling

3.10.1 Return Codes

The Retcode member of an instance of a comtResults structure, which is returned by
COMT, contains a scalar number that contains information about the status of the
iterations upon exiting COMT. The following table describes their meanings:

0 normal convergence

1 forced exit

2 maximum iterations exceeded

3 function calculation failed

4 gradient calculation failed

5 Hessian calculation failed

6 line search failed

7 function cannot be evaluated at initial parameter values

8 error with gradient

9 error with constraints

10 secant update failed

11 maximum time exceeded

13 quadratic program failed

14 equality Jacobian failed

15 inequality Jacobian failed

16 function evaluated as complex

20 Hessian failed to invert
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3.10.2 Error Trapping

Setting the PrintIters member of an instance of a comtControl structure to zero turns
off all printing to the screen. Error codes, however, still are printed to the screen unless
error trapping is also turned on. Setting the trap flag to 4 causes COMT not to send the
messages to the screen:

trap 4;

Whatever the setting of the trap flag, COMT discontinues computations and returns with
an error code. The trap flag in this case only affects whether messages are printed to the
screen or not. This is an issue when the COMT function is embedded in a larger program,
and you want the larger program to handle the errors.

3.11 References

1. Brent, R.P., 1972. Algorithms for Minimization Without Derivatives.
Englewood Cliffs, NJ: Prentice-Hall.

2. Conn, Andrew R., Gould, Nicholas I.M., Toint, Philippe L., 2000.
Trust-Region Methods. Philadelphia: SIAM.

3. Dennis, Jr., J.E., and Schnabel, R.B., 1983. Numerical Methods for
Unconstrained Optimization and Nonlinear Equations. Englewood Cliffs,
NJ: Prentice-Hall.

4. Fletcher, R., 1987. Practical Methods of Optimization. New York: Wiley.

5. Gill, P. E. and Murray, W. 1972. “Quasi-Newton methods for unconstrained
optimization.” J. Inst. Math. Appl., 9, 91-108.

6. Han, S.P., 1977. “A globally convergent method for nonlinear
programming.” Journal of Optimization Theory and Applications,
22:297-309.

3-35



Constrained Optimization MT 1.0 for GAUSS

7. Hock, Willi and Schittkowski, Klaus, 1981. Lecture Notes in Economics
and Mathematical Systems. New York: Springer-Verlag.

8. Jamshidian, Mortaza and Bentler, P.M., 1993. “A modified Newton method
for constrained estimation in covariance structure analysis.” Computational
Statistics & Data Analysis, 15:133-146.

9. Schoenberg, Ronald, 1997. “Constrained Optimization”. Computational
Economics, 1997:251-266.

3-36



R
eference

COMT Reference 4

comt

PURPOSE Computes estimates of parameters of a constrained objective function.

LIBRARY comt

FORMAT out = COMT(&modelProc,par,data,ctl);

INPUT &modelProc a pointer to a procedure that returns the value of the
objective function given the parameters.

par instance of a PV structure containing start values for the
parameters constructed using the pvPack functions.
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data instance or matrix of instances of a DS structure containing
data. It is passed to the user-provided procedure pointed at
by &fct to be used in the objective function. A scalar or
vector of DS instances passed to comt are passed unchanged
to the user-provided procedure that computes the objective
function. All members of all the instances can be set at the
discretion of the programmer.

ctl an instance of a comtControl structure. Normally an
instance is initialized by calling comtCreate and members
of this instance can be set to other values by the user. For an
instance named ctl, the members are:
ctl.A M × K matrix, linear equality

constraint coefficients: ctl.A * p =
ctl.B where p is a vector of the
parameters.

ctl.B M × 1 vector, linear equality
constraint constants: ctl.A * p = ctl.B
where p is a vector of the parameters.

ctl.C M × K matrix, linear inequality
constraint coefficients: ctl.C * p ≥
ctl.D where p is a vector of the
parameters.

ctl.D M × 1 vector, linear inequality
constraint constants: ctl.C * p ≥ ctl.D
where p is a vector of the parameters.

ctl.EqProc scalar, pointer to a procedure that
computes the nonlinear equality
constraints. When such a procedure
has been provided, it has two input
arguments, an instance of a PV
parameter structure, and an instance
of a DS data structure, and one output
argument, a vector of computed
equality constraints. For more details
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see Remarks below. Default = {.}, i.e.,
no equality procedure.

ctl.IneqProc scalar, pointer to a procedure that
computes the nonlinear inequality
constraints. When such a procedure
has been provided, it has two input
arguments, an instance of a PV
parameter structure, and an instance
of a DS data structure, and one output
argument, a vector of computed
inequality constraints. For more
details see Remarks below. Default =
{.}, i.e., no inequality procedure.

ctl.EqJacobian scalar, pointer to a procedure that
computes the Jacobian of the equality
constraints. When such a procedure
has been provided, it has two input
arguments, an instance of a PV
parameter structure, and an instance
of a DS data structure, and one output
argument, a matrix of derivatives of
the equality constraints with respect
to the parameters. Default = {.}, i.e.,
no equality Jacobian procedure.

ctl.IneqJacobian scalar, pointer to a procedure that
computes the Jacobian of the
inequality constraints. When such a
procedure has been provided, it has
two input arguments, an instance of a
PV parameter structure, an instance of
a DS data structure, and one output
argument, a matrix of derivatives of
the inequality constraints with respect
to the parameters. Default = {.}, i.e.,
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no inequality Jacobian procedure.
ctl.Bounds 1 × 2 or K × 2 matrix, bounds on

parameters. If 1 × 2 all parameters
have same bounds. Default = {
-1e256 1e256 }.

ctl.Algorithm scalar, descent algorithm.
0 Modified BFGS
1 BFGS (default)
2 DFP
3 Newton

ctl.useThreads scalar, if nonzero, the calculation of
numerical derivatives will be
threaded. Default = 0.

ctl.Switch 4 × 1 or 4 × 2 vector, controls
algorithm switching:
if 4 × 1:
ctl.Switch[1] algorithm

number to
switch to.

ctl.Switch[2] comt switches
if function
changes less
than this
amount.

ctl.Switch[3] comt switches
if this number
of iterations is
exceeded.

ctl.Switch[4] comt switches
if line search
step changes
less than this
amount.
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else if 4 × 2 comt switches between
the algorithm in column 1 and
column 2. Default = { 1 3, .0001
.0001, 10 10, .0001 .0001 }.

ctl.LineSearch scalar, sets line search method.
0 augmented trust region method

(requires constraints)
1 STEPBT (quadratic and cubic

curve fit) (default)
2 Brent’s method
3 half
4 Wolfe’s condition

ctl.TrustRadius scalar, radius of the trust region. If
scalar missing, trust region not
applied. The trust sets a maximum
amount of the direction at each
iteration. Default = .001.

ctl.Active K × 1 vector, set K-th element to zero
to fix it to start value. Use the
GAUSS function pvGetIndex to
determine where parameters in the PV
structure are in the vector of
parameters. Default = {.}, all
parameters are active.

ctl.MaxIters scalar, maximum number of
iterations. Default = 10000.

ctl.DirTol scalar, convergence tolerance.
Iterations cease when all elements of
the direction vector are less than this
value. Default = 1e − 5.

ctl.FeasibleTest scalar, if nonzero, parameters are
tested for feasibility before
computing function in line search. If
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function is defined outside inequality
boundaries, then this test can be
turned off. Default = 1.

ctl.MaxTries scalar, maximum number of attempts
in random search. Default = 100.

ctl.RandRadius scalar, If zero, no random search is
attempted. If nonzero, it is the radius
of the random search. Default = .001.

ctl.GradMethod scalar, method for computing
numerical gradient.
0 central difference
1 forward difference (default)
2 backward difference

ctl.HessMethod scalar, method for computing
numerical Hessian.
0 central difference
1 forward difference (default)
2 backward difference

ctl.GradStep scalar or K × 1, increment size for
computing numerical gradient. If
scalar, stepsize will be value times
parameter estimates for the numerical
gradient. If K × 1, the step size for
the gradient will be the elements of
the vector, i.e., it will not be
multiplied times the parameters.

ctl.HessStep scalar or K × 1, increment size for
computing numerical Hessian. If
scalar, stepsize will be value times
parameter estimates for the numerical
Hessian. If K × 1, the step size for the
gradient will be the elements of the
vector, i.e., it will not be multiplied
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times the parameters.
ctl.GradCheck scalar, if nonzero and if analytical

gradients and/or Hessian have been
provided, numerical gradients and/or
Hessian are computed and compared
against the analytical versions.

ctl.State scalar, seed for random number
generator.

ctl.Title string, title of run.
ctl.printIters scalar, if nonzero, prints iteration

information. Default = 0.
ctl.DisableKey scalar, if nonzero, keyboard input

disabled.

OUTPUT out instance of a comtResults structure. For an instance
named out, the members are:

out.Par instance of a PV structure containing
the parameter estimates. Use
pvUnpack to retrieve matrices and
arrays or pvGetParvector to get the
parameter vector.

out.Fct scalar, function evaluated at
parameters in out.Par

out.ReturnDescription string, description of return
values.

out.Hessian K × K matrix, Hessian evaluated at
parameters in out.Par.

out.Gradient K × 1 vector, gradient evaluated at
the parameters in out.Par.

out.NumIterations scalar, number of iterations.
out.ElapsedTime scalar, elapsed time of iterations.
out.Title string, title of run.
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out.Lagr an instance of a comtLagrange
structure containing the Lagrangeans
for the constraints. For an instance
named out.Lagr, the members are:
out.Lagr.Lineq M × 1 vector,

Lagrangeans of
linear equality
constraints.

out.Lagr.Nlineq N × 1 vector,
Lagrangeans of
nonlinear
equality
constraints.

out.Lagr.Linineq P × 1
vector,
Lagrangeans of
linear
inequality
constraints.

out.Lagr.Nlinineq Q × 1
vector,
Lagrangeans of
nonlinear
inequality
constraints.

out.Lagr.Bounds K × 2
matrix,
Lagrangeans of
bounds.

Whenever a constraint is active, its
associated Lagrangean will be
nonzero. For any constraint that is
inactive throughout the iterations as
well as at convergence, the
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corresponding Lagrangean matrix
will be set to a scalar missing value.

out.structmemRetcode return code:

0 normal convergence
1 forced exit
2 maximum number of iterations

exceeded
3 function calculation failed
4 gradient calculation failed
5 Hessian calculation failed
6 line search failed
7 functional evaluation failed
8 error with initial gradient
9 error with constraints
10 second update failed
11 maximum time exceeded
12 error with weights
13 quadratic program failed
14 equality constraint Jacobian

failed
15 inequality constraint Jacobian

failed
16 function evaluated as complex
20 Hessian failed to invert

REMARKS Writing the Objective Function There is one required user-provided
procedure, the one computing the objective function and optionally the
first and/or second derivatives, and four other optional procedures, one
each for computing the equality constraints, the inequality constraints,
the Jacobian of the equality constraints, and the Jacobian of the
inequality constraints.
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The main procedure, computing the objective function and optionally
the first and/or second derivatives, has three arguments: an instance of
type struct PV containing the parameters, a second argument that is an
instance of type struct DS containing the data, and a third argument that
is a vector of zeros and ones indicating which of the results, the
function, first derivatives, or second derivatives, are to be computed.

The remaining optional procedures take just two arguments: the
instance of the PV structure containing the parameters and the instance
of the DS structure containing the data.

The instance of the PV structure is set up using the PV pack procedures,
pvPack, pvPackm, pvPacks, and pvPacksm. These procedures allow
for setting up a parameter vector in a variety of ways.

The instance of the DS structure containing the data is set up in two
distinct ways depending on whether comt is to read the data in from a
GAUSS data set or whether the data is in a matrix.

For example, the following procedure computes the objective function
and the first derivatives for a tobit model:

proc fct(struct PV p, struct DS d, ind);

local x,h0;

struct modelResults mm;

x = pvUnpack(p,"x");

if ind[1];

mm.function = 100*(x[2]-x[1]ˆ2)ˆ2 + (1-x[1])ˆ2 +

90*(x[4]-x[3]ˆ2)ˆ2 + (1-x[3])ˆ2 + 10.1*((x[2]-1)ˆ2 +

(x[4]-1)ˆ2) + 19.8*(x[2]-1)*(x[4]-1);

endif;

if ind[2];

local a,b;
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a = x[2] - x[1]ˆ2;

b = x[4] - x[3]ˆ2;

mm.gradient = zeros(4,1);

mm.gradient[1] = -2*(200*x[1]*a + 1 - x[1]);

mm.gradient[2] = 2*(100*a + 10.1*(x[2]-1) +

9.9*(x[4]-1));

mm.gradient[3] = -2*(180*x[3]*b + 1 - x[3]);

mm.gradient[4] = 2*(90*b + 10.1*(x[4]-1) +

9.9*(x[2]-1));

endif;

if ind[3];

mm.hessian = d.dataMatrix;

mm.hessian[1,1] = -2*(200*(x[2]-x[1]ˆ2) -

400*x[1]ˆ2 - 1);

mm.hessian[1,2] = -400*x[1];

mm.hessian[2,1] = mm.hessian[1,2];

mm.hessian[3,3] = -2*(180*(x[4]-x[3]ˆ2) -

360*x[3]ˆ2 - 1);

mm.hessian[4,3] = -360*x[3];

mm.hessian[3,4] = mm.hessian[4,3];

endif;

retp(mm);

endp;

Nonlinear Equality or Inequality Constraints Procedures

The procedures for nonlinear equality and inequality constraints take
two input arguments, an instance of a PV parameter structure and an
instance of a DS data structure. For example, to constrain the sum of
squares of coefficients to be greater than one, provide the following
procedure:
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proc ineqConst(struct PV par1, struct DS data1);

local b;

b = pvUnpack(p,"b");

retp( sumc(bˆ2) - 1 );

endp;

EXAMPLE The following is a complete example. It is Problem 32 in Hock and
Schittkowski, Test Examples for Nonlinear Programming Codes,
1981, Springer-Verlag

library comt;

#include comt.sdf

struct DS d0;

d0 = dsCreate;

proc fct(struct PV p, struct DS d, ind);

local x,h0;

struct modelResults mm;

x = pvUnpack(p,"x");

if ind[1];

mm.function = (x[1] + 3*x[2] + x[3])ˆ2 + 4*(x[1] -

x[2])ˆ2;

endif;

if ind[2];

mm.gradient = zeros(3,1);

mm.gradient[1] = 10*x[1] - 2*x[2] + 2*x[3];

mm.gradient[2] = -2*x[1] + 26*x[2] + 6*x[3];

mm.gradient[3] = 2*x[1] + 6*x[2] + 2*x[3];

endif;

if ind[3];
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mm.hessian = zeros(3,3);

mm.hessian[1,1] = 10;

mm.hessian[1,2] = -2;

mm.hessian[1,3] = 2;

mm.hessian[2,1] = -2;

mm.hessian[2,2] = 26;

mm.hessian[2,3] = 6;

mm.hessian[3,1] = 2;

mm.hessian[3,2] = 6;

mm.hessian[3,3] = 2;

endif;

retp(mm);

endp;

proc ineqp(struct PV p, struct DS d);

local x;

x = pvUnpack(p,"x");

retp(6*x[2] + 4*x[3] - x[1]ˆ3 - 3);

endp;

proc ineqj(struct PV p, struct DS d);

local x;

x = pvUnpack(p,"x");

retp(-3*x[1]ˆ2˜6˜4);

endp;

proc eqp(struct PV p, struct DS d);

local x;

x = pvUnpack(p,"x");

retp(1-sumc(x));

endp;

proc eqj(struct PV p, struct DS d);

local x;

x = pvUnpack(p,"x");

retp(-ones(1,3));
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endp;

struct comtControl c0;

c0 = comtControlCreate;

c0.ineqProc = &ineqp;

c0.ineqJacobian = &ineqj;

c0.eqProc = &eqp;

c0.eqJacobian = &eqj;

c0.bounds = { 0 1e256 };

struct PV p0;

p0 = pvPack(pvCreate,.1|.7|.2,"x");

struct comtResults out;

out = comt(&fct,p0,d0,c0);

call comtPrt(out);

print;

print;

print "published solution";

print " 0 0 1";

print;

print "nonlinear equality Lagrangeans";

print out.lagr.nlineq;

print;

print "nonlinear inequality Lagrangeans";

print out.lagr.nlinineq;

print;

print "boundary Lagrangeans";

print out.lagr.bounds;
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The output is

========================================================

COMT Version 1.0.0 2/02/2010 3:04 pm

========================================================

return code = 0

normal convergence

Objective Function 1.00000

Parameters Estimates Gradient

--------------------------------------------------------

x[1,1] 0.0000 2.0000

x[2,1] 0.0000 6.0000

x[3,1] 1.0000 2.0000

Number of iterations 4520

Minutes to convergence 2.04775

published solution

0 0 1

nonlinear equality Lagrangeans

-1.9999998

nonlinear inequality Lagrangeans

0.00000000

boundary Lagrangeans

0.00000000 0.00000000

3.9999998 0.00000000

0.00000000 0.00000000

SOURCE comt.src
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COMTControlCreate

PURPOSE Creates a default instance of type COMTControl.

LIBRARY comt

FORMAT s = COMTControlCreate;

OUTPUT s instance of type COMTControl.

SOURCE comtutil.src

COMTLagrangeCreate

PURPOSE Creates a default instance of type COMTLagrange.

LIBRARY comt

FORMAT s = COMTLagrangeCreate;

OUTPUT s instance of type COMTLagrange.

SOURCE comtutil.src
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COMTResultsCreate

PURPOSE Creates a default instance of type COMTResults.

LIBRARY comt

FORMAT s = COMTResultsCreate;

OUTPUT s instance of type COMTResults.

SOURCE comtutil.src

ModelResultsCreate

PURPOSE Creates a default instance of type ModelResults.

LIBRARY comt

FORMAT s =ModelResultsCreate;

OUTPUT s instance of type ModelResults.

SOURCE comtutil.src
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COMTPrt

PURPOSE Formats and prints the output from a call to COMT.

LIBRARY comt

FORMAT out = COMTPrt(out);

INPUT out instance of comtResults structure containing results of an
estimation generated by a call to comt.

OUTPUT out the input instance of the comtResults structure unchanged.

REMARKS The call to COMT can be nested in the call to COMTPrt:

call COMTPrt(COMT(&modelProc,par,data,ctl));

SOURCE comtutil.src
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