
SYMBOLIC TOOLS
Symbolic Tools for GAUSS

ECONOTRON SOFTWARE, INC.
Version 1.0

Jon Breslaw

June, 2003

The contents of this manual is subject to change without notice, and does not
represent a commitment on the part of Econotron Software, Inc. The software
described in this document is furnished under a license agreement or nondisclo-
sure agreement. The software may be used or copied only in accordance with the
terms of the agreement. The purchaser may make one copy of the software for
backup purposes. No part of this manual may be reproduced or transmitted in
any form or by any means, electronic or mechanical, for any purpose other than
the purchaser’s personal use without the prior written permission of Econotron
Software.
Copyright c© 2003 Econotron Software, Inc.
All Rights Reserved

GAUSS is a trademarks of Aptech Systems, Inc.

Support:
Econotron Software
447 Grosvenor Ave.
Westmount, P.Q. Canada
H3Y-2S5
Tel: (514) 939-3092
Fax: (514) 938-4994
Eml: support@econotron.com
Web: http://www.econotron.com

Contents

1 Introduction 1
1.1 Concept . 1
1.2 Symbolic Modes . 3
1.3 Example files . 5

2 Installation and Testing 7
2.1 Installation Requirements . 7
2.2 Installing Symbolic Tools . 7
2.3 Testing Symbolic Tools . 8

3 Tutorial 9
3.1 Example 1 . 9
3.2 Example 2 . 11
3.3 Example 3 . 12
3.4 Example 4 . 13

4 Symbolic Data Types and Operations 19
4.1 Data types . 19
4.2 Symbolic Elements . 20
4.3 Symbolic List . 20
4.4 Symbolic Vector . 21
4.5 Symbolic Matrix . 22

5 Symbolic Tools Commands - Summary 25

5.1 Summary . 25
5.1.1 GAUSS Commands . 25
5.1.2 Maple Commands . 26

6 Reference - GAUSS commands 27

7 Reference - Maple commands 45

8 GAUSS functions 53

ii

Chapter 1

Introduction

1.1 Concept

The concept of symbolic manipulation is to augment the numeric and graphi-
cal capabilities of GAUSS with additional types of mathematical computations.
These include:

• Symbolic Algebra. This includes analytic differentiation and integration,
as well as simplification.

• Linear Algebra. This capability allows for the exact (as opposed to the
numeric) evaluation of matrix forms, including inverses, determinants and
eigenvalues.

• Language Extension. This permits the evaluation of a wide range of math-
ematical functions and matrix forms, effectively extending the GAUSS lan-
guage.

• Precision. Numerical evaluation of functions can occur at any specified
level of accuracy.

The computational work is carried out by the Maple kernel using the Open Maple
interface. Maple is a symbolic mathematics package developed at the University
of Waterloo, and distributed by Waterloo Maple, Inc.

1

INTRODUCTION

Symbolic Tools consists of a set of functions that provide an interface between
GAUSS and the Maple kernel. These functions provide the means of sending
variables or code from GAUSS to the kernel, running GAUSS code within the
kernel, and returning variables back to GAUSS.
GAUSS is a programming language in which each variable is given a name - gnp,
coeff, foo — any legal GAUSS name. Associated with each name is a type - a
scalar, matrix, string, stringarray, etc. Each variable has associated value(s) -
6.4 for a scalar, "Hello World" for a string, {2,4,6} for a vector, etc. Symbolic
Tools adds a new datatype - a symbol - to the set of datatypes used by GAUSS.
So in normal GAUSS mode:

z = x + y;
results in z being generated as a scalar taking the value 5 assuming that x is a
scalar with the value 2 and y is a scalar with the value 3. The same command
in which both x and y are symbols results in z being created as a symbol, with
the value x + y. Thus in symbolic mode, the same GAUSS syntax is used, but
instead of manipulating value or strings, one manipulates symbols. Symbols can
represent scalars, vectors or matrices, but the content of these variables does not
need to be specified.
As a simple example, if vectors v1 and v2 are specified as:

v1 = {a, b};
v2 = {c, d};

then:
v1’v2 = a*c + b*d

The ability to use symbolic arithmetic enables a GAUSS optimization process
to use analytic gradients and Hessians — this is called automatic differentiation.
There exists a number of GAUSS optimization packages — Maxlik, Optmum, CML,
etc — that require the gradient and Hessian of the function being optimized in
order to evaluate the appropriate search direction. In the default, these are
calculated numerically using forward differencing:

df/dbi = [f(b1, ..bi + h, ..bn)− f(b)]/h
The Hessian is similarly calculated using the second derivative. For the Hessian,
the number of function evaluations increases quadratically with the number of
parameters. Thus, as the gradients and Hessians have to be recalculated at each
iteration, this process becomes very time intensive if there are a large number of
parameters.
These optimization packages provide mechanisms whereby the user can specify
the procedures that will return values of the gradient and/or Hessian, instead of
doing forward differencing. Thus, as a trivial example, if the function were:

2

INTRODUCTION

F = ln(b);
then the user could specify functions for the gradient and Hessian:

GF = 1/b;
HF = −1/b2;

Symbolic Tools can create GAUSS procs for the gradients and Hessian of the spec-
ified function, and this approach works very well for enabling automatic differ-
entiation in GAUSS. Using Monte Carlo simulation of a Tobit example with 2000
observations and 11 parameters, the AD gradient took 10% of the time required
for forward differences using gradp - ie. approximately a 10 fold speed improve-
ment. Similar results were also obtained for the Hessian, with the additional
advantage that the AD methodology generated much more precise estimates of
the gradients and Hessian.

1.2 Symbolic Modes
Symbolic operations are carried out using the Maple kernel. There are two main
modes utilized:
1. Direct Mode: Symbolic code is sent to Maple, where the symbolic operations
are stored. Values are then sent to Maple, the symbolic operations are carried
out using these values, and the numeric data is returned to GAUSS.
2. Compiled Mode: Symbolic code is sent to Maple, which then creates a GAUSS
proc which replicate the symbolic operations carried out in Maple.
A trivial example demonstrates both ideas. We wish to evaluate the gradient of
the function sin(x ∗ y) at the point x = .5, y = .75.

txt = " slist = {x,y};
llf = sin(x*y);
llfg = gradp(llf,slist);

";
Using this direct mode method, this chunk of code is executed using the symrun
command, the values for x and y are sent to the Maple kernel, and the results
retrieved.

call symrun(txt);
call symput(x,"x");
call symput(y,"y");
rslt = symget("llfg");

3

INTRODUCTION

The symrun command generates (in Maple) the symbolic variables slist, llf
and llfg. llfg is a symbolic vector:

llfg = { y*cos(x*y), x*cos(x*y) }

We evaluate the value llfg takes at x = .5, y = .75 by specifying the values of
the symbols x and y using the symput statement, and retrieving the new value
of llfg using the symget statement.
In compiled mode, the same code is executed using the symproc command:

call symproc("diffsin","x,y","llfg",txt);

This generates a GAUSS procedure called diffsin as a string, with an input
argument x,y, and creating an output llfg. The procedure is also compiled,
and can be immediately called as a standard GAUSS proc.

proc diffsin(x,y);
local t0, t2, unknown;
unknown = zeros(2,1);
t2 = cos(x .* y);
unknown[1+0] = sumc(t2 .* y) ;
unknown[1+1] = sumc(t2 .* x) ;
retp(unknown);
endp;

Thus the difference between the two modes is that in Direct Mode, the numeric
evaluation takes place under Maple, while under Compiled Mode it takes place
under GAUSS. The latter is between 10 and 100 times faster, and thus for most
operations where speed is essential, such as automatic differentiation, Compiled
Mode is more suitable. The two example files intro1.e and introl2.e in the sym-
bolic\samples\tutorial folder demonstrate these two modes.
Besides symbolic analysis, Symbolic Tools can be used to augment GAUSS func-
tionality by using Maple commands that are not available in GAUSS. To take a
trivial example, one wishes to know the value of the norm of matrix. This is
undertaken using the symmaple statement:

x = rndu(3,4);
xnorm = symmaple("norm(x)",0);

These examples are coded in the file symbolic\samples\tutorial\into3.e.

4

INTRODUCTION

1.3 Example files

The symbolic\samples folder contains a large number of example files that demon-
strate the capabilities of Symbolic Tools.
Tutorial These files are described above — the new user should start with these

files, before progressing to the other examples.
GAUSS Each file in this folder demonstrates how the specified GAUSS com-

mand is used within Symbolic Tools.
AD The Automatic Differentiation folder contains two subfolders (Maxlik and

Optmum). See the file readme.txt which describes AD, and the difference
between the two folders.

Applications A number of applications, including integration and non-linear
estimation.

5

INTRODUCTION

6

Chapter 2

Installation and Testing

This chapter describes the hardware and software configuration required to run
Symbolic Tools on your computer.

2.1 Installation Requirements
The Symbolic Tools (vsn. 5) system requirements are:

• Windows 9x, NT4, ME, 2000, or XP.
• GAUSS for Windows 4.0 or higher, or the GAUSS Engine for Windows 4.0

or higher.
• Maple 9 for Windows or higher. An evaluation version of Maple 9 available

at http://register.maplesoft.com/TrialDownload.asp

2.2 Installing Symbolic Tools
Before you open the product package, please read the license agreement that
accompanies Symbolic Tools. By installing and using the product, you accept
the terms of this agreement.
The program files on the CD are compressed, so you cannot simply copy them
to your computer. Rather, you must run the installation program which decom-
presses the files and copies them to your hard disk in the appropriate directories.

7

INSTALLATION AND TESTING

1. Insert the Symbolic Tools CD into the appropriate drive.
2. From the Windows Start menu, chose Run.
3. Type d:\setup.exe (where d: is the letter for your CD drive).
4. Choose OK.
5. Follow the instructions on the screen.

The installation routine creates a folder called symbolic on the GAUSS or GAUSS
Engine folder. Within this folder, the following subfolders are created
doc This folder contains the Symbolic Tools help files and manual.
lib This folder contains the Symbolic Tools Maple package.
samples This folder contains demonstration files for using Symbolic

Tools.

2.3 Testing Symbolic Tools

Launch GAUSS (or engauss.exe for the GAUSS Engine) and run the file:
symbolic\samples\tutorial\symtest.e.

This opens the Maple kernel, and reports some statistics about the kernel. There
are three other files in the tutorial folder - intro1.e, intro2.e and intro3.e, which
you should also run to check that the installation has been correctly performed.
These files also demonstrate programming techniques in Symbolic Tools.

8

Chapter 3

Tutorial

GAUSS is a numeric based application, in that it operates on variables that have
specified values, such as x = 2, y = 4 or z = ”abc”. Thus x ∗ y results in
8. Symbolic applications - such as Maple - do not operate solely on numerical
values - they can in addition, act on symbolic values. So if x = a, and y = b,
then x ∗ y results in a ∗ b. This can be very useful - for example, we might want
to have the indefinite integral of x2, but not yet want it evaluated. So we would
like to have this indefinite integral available as x3/3.
Symbolic Tools makes these symbolic results available to GAUSS as procedures.
Four examples are presented below:

3.1 Example 1
We require the determinant of a matrix where the elements on the principal
diagonal are symbolic. Obviously this could be evaluated using GAUSS, but
the idea might be that one had a huge matrix, and one wanted to know the
determinant if only a couple of elements change.
The GAUSS program to do this is fairly simple, and is shown below in the string
txt. Besides the GAUSS command symmat, which is used to define a symbolic
matrix, the code in txt is conventional GAUSS . The symproc command is used
to create a GAUSS procedure — this command takes the procedure name, the

9

TUTORIAL

procedure input arguments, the procedure output arguments and the procedure
code as arguments. In this example, symproc takes the code in the string txt,
creates a GAUSS proc called symdet, and compiles it. It is then called with nu-
meric arguments in the standard manner. Thus Symbolic Tools uses procedures
to map symbolic arithmetic to numerical output.

The GAUSS program:

library symbolic;
call symstate(reset);
proc symdet; endp;
txt = "

x11 = x[1];
x22 = x[2];
amat = symmat(2,2,{x11,2,8,x22});
rslt = det(amat);
";

call symproc("symdet","x","rslt",txt); // compile the procedure
let xdiag = 1 9; // some intial values
rslt = symdet(xdiag); // call the compiled proc
"rslt \n" rslt;

The Output:

rslt
-7.0000000

The computer generated proc:

proc symdet(x);
local t0, t2, unknown;

t2 = x[1+0] .* x[1+1]-16.0;
retp(t2);

endp;

10

TUTORIAL

3.2 Example 2

We require the analytic gradient of a function. The example below shows a
simple example, but this provides the basis for automatic differentiation.
The GAUSS program to do is shown below. The string txt creates the gradient of
the function sin(x∗y)2, which is then created as a proc called diffsin. Note both
that gradp is overloaded, so that it can accept a symbol list (slist) instead of
numeric values. Also note that the proc allows arguments that are both scalars
and matrices.

The Gauss program:

library symbolic;
proc diffsin; endp; // dummy proc
call symstate(reset); // symbolic reset
txt = "

slist = {x,y};
llf = sin(x*y)^2;
llfg = gradp(llf,slist);
";

call symproc("diffsin","x,y","llfg",txt); // compile the proc
rslt = diffsin(0.5,0.75); // call the proc
"\n rslt " rslt;

The Output:

rslt
0.51122907
0.34081938

11

TUTORIAL

The computer generated proc:

proc diffsin(x,y);
local t0, t1, t2, t3, t4, unknown;

unknown = zeros(2,1);
t1 = x .* y;
t2 = sin(t1);
t3 = cos(t1);
t4 = t2 .* t3;
unknown[1+0] = sumc(2.0 .* t4 .* y) ;
unknown[1+1] = sumc(2.0 .* t4 .* x) ;
retp(unknown);

endp;

3.3 Example 3
We require the indefinite integral of a function. The example below shows a very
simple example, but much more complicated cases exist.1 The GAUSS program
to do this is shown below. The txt provides the integral of y ∗ x2 (which is
not very exciting) as a proc called intsim. Intquad is used - we don’t need
intquad1, intquad2, etc. since the level of integration is given by the length
of slist. Again, intquad is overloaded to permit both numeric and symbolic
integration.

The Gauss program:

library symbolic ;
proc intsim; endp; // dummy proc
call symstate(on); // symbolic reset
txt = "

slist = {x,y};
llf = y*(x^2);
intg = intquad(llf,slist);

1

This technique was used to create the integral of the Pearson function in "Simu-
lated Latent Variable Estimation of Models with Ordered Categorical Data", (J.
Breslaw and J. McIntosh) Journal of Econometrics, 87, 1998, pp 25-47.

12

TUTORIAL

";
call symproc("intsim","x,y","intg",txt); // compile the proc
rslt = intsim(0.75,0.5); // call the proc
"rslt \n" rslt;

The Output:

rslt
0.017578125

The computer generated proc:

proc intsim(x,y);
local t0, t1, t2, t5, unknown;

t1 = y .* y;
t2 = x .* x;
t5 = t1 .* t2 .* x ./ 6.0;
retp(t5);

endp;

3.4 Example 4
Finally, a real world example - a Tobit estimation. The code shown is a Monte
Carlo simulation of the Hessian, based on 2000 observations, 4 parameters, and
200 replications. The results show element [2,1] of the Hessian for the first 10
replications, while the time in each case is for the full 100 replications. As can
be seen, the symbolic code is over 10 times faster than hessp.

/* Symbolic example: Tobit.e

proc tobit(y,indx,sigma);
y is the censored variable
indx is the vector of the index
sigma is the parameter for the std. error of the residual

13

TUTORIAL

*/

/**
** Initialization **
**/

library symbolic;
call symstate(reset); // Initialize Symbolic tools
call symdebug(off); // Debug mode shows line by line

rndseed 12345;
mode = 1; // 0 - gradient; 1 - Hessian
replics = 200; // number of replications
num = 2000; // number of observations

// create the data
sigma = 2;
xmat = ones(num,1) ~rndu(num,2);
y = 2*sigma*rndn(num,1);
x1= xmat[.,1];
x2= xmat[.,2];
x3= xmat[.,3];
xrnd = rndu(replics,4); // parameters

rslt = zeros(replics,2); // initialization
clear time1, time2;
jj = 2;
title = "Tobit process";
process = "Gradient" $| "Hessian";
cls;
print /flush title ;

/**
** Code for a Tobit process **
**/

// GAUSS code as proc

proc llfn(bpar);
local llf1, indx, bvec, sigma, llf2,llf,h;

14

TUTORIAL

h = .000001;
bvec = bpar[1:3];
sigma = bpar[4];
indx = xmat*bvec;
sigma = maxc(sigma|h);
llf1 = -((y-indx)^2) / (2*sigma) - .5*ln(2*pi*sigma);
llf2 = ln(h+cdfnc(indx/sqrt(sigma)));
llf = (y .gt 0).*llf1 + (y .le 0).*llf2;
retp(sumc(llf));

endp;

// Gauss symbolic representation as string

txt = "
h = .000001;
slist = symset(bpar,b,4);
indx = x1*b1+x2*b2+x3*b3;
sigma = maxc(symvec({h,b4}));
llf1 = -(y-indx)^2 / (2*sigma) - .5*ln(2*pi*sigma);
llf2 = ln(h+cdfnc(indx/sqrt(sigma)));
llf = sumc((y .gt 0).*llf1 + (y .le 0).*llf2);
llfg = gradp(llf,slist);
llfh = hessp(llf,slist);

";

/**
** create a GAUSS proc that does the AD **
**/

proc llfproc; endp; // dummy proc
if mode == 0;
call symproc("llfproc","bpar","llfg",txt); // gradient

else;
call symproc("llfproc","bpar","llfh",txt); // hessian

endif;

/**
** Monte Carlo using forward difference **
**/

cls;

15

TUTORIAL

print /flush title ;
print /flush

"\n Evaluating " process[mode+1] " using Forward Differencing...";;
d1=date;
j = 1;
do while j <= replics;

if mode == 0;
gvec = gradp(&llfn,xrnd[j,.]’);

else;
gvec = hessp(&llfn,xrnd[j,.]’);

endif;
rslt[j,1] = gvec[1,jj];
j = j+1;

endo;
time1 = ethsec(d1,date)/100;

/**
** Monte Carlo using symbolic code **
**/

print "";
print /flush

"\n Evaluating " process[mode+1] " analytically...";;
d1=date;
j = 1;
do while j <= replics;

x = vec(xrnd[j,.]);
gvec = llfproc(x);
rslt[j,2] = gvec[1,jj];
j = j+1;

endo;
time2 = ethsec(d1,date)/100;

/**
** Monte Carlo results **
**/

cls;
print /flush title ": " process[mode+1];
" ";
" numerical analytical ";
rslt[1:10,.];

16

TUTORIAL

" \nTime (secs)\n " time1~time2;
" \nSpeed factor: " time1/time2;
" \n";

The Output:

numerical analytic

-1365.4884 -1364.2409
-979.19588 -976.33761
-1899.4885 -1900.6809
-4442.5751 -4448.6259
-1238.0001 -1231.6229
-2540.5553 -2560.5614
-1148.6819 -1149.3890
-1311.6106 -1268.6765
-1065.7274 -1063.2483
-1157.2675 -1158.1068

time (secs)
10.532000 1.0310000

17

TUTORIAL

18

Chapter 4

Symbolic Data Types and
Operations

As in GAUSS, each variable refers to an entity - these can be individual scalars, or
more complex groupings such as vectors and matrices. In GAUSS, each element
is given a value, such as x = 4.7; for a numeric component, or txt = "abc";
for a string component. In symbolic mode, the same GAUSS syntax is used, but
instead of manipulating value or strings, one manipulates symbols. Symbols can
occurs as elements, or as compontents of a list, a vector, or a matrix.

4.1 Data types

Symbolic Tools supports the following data types:
scalar (real, complex, symbol)
vector (real, complex, symbol)
matrix (real, complex, symbol)
string

19

SYMBOLIC DATA TYPES AND OPERATIONS

The following types are not supported:
arrays
string arrays
structures
GAUSS data sets
band and sparse matrices
character vectors
date and time types
graphics
fuzzy operators

4.2 Symbolic Elements
Each symbol is designated by a name, which is just the GAUSS variable name -
x, y, foo - any legal GAUSS name. Thus the command:

sigma = b;
defines a GAUSS variable, sigma which has a value of b. b is neither numeric,
nor a string; rather it is just a symbol.

4.3 Symbolic List
The main structure used in the symbolic arithmetic is a list - an ordered list of
symbols:

slist = {a,b,c,d};
These lists are the basis for most symbolic operations.

List Creation Lists can be created in a number of ways:
1. slist = {a,b,c,d};
2. slist = symlist(4,x); This creates slist = {x1,x2,x3,x4};.
3. slist = symlist(vect); This converts a vector to a list.
4. slist = symset(bpar,b,4); This creates slist = {b1,b2,b3,b4} and

assigns each symbol to the corresponding element of the GAUSS vector
bpar.

20

SYMBOLIC DATA TYPES AND OPERATIONS

5. slist = symdat(dta,b,4); This creates slist = {b1,b2,b3,b4} and
assigns each symbol to the corresponding column of the GAUSS matrix
dta.

Lists are used in creating symbolic vectors and matrices (see below), and
as arguments of functions that evaluate accross a list, such as symbolic
differentiation and integration.

Element Identification

slist = {a,b,c,d};
slist[3] is ’c’
slist[2:3] is {b,c}

List Concatenation If vlst1 and vlst2 are two lists, then concatenation occurs
by:

vlst1 | vlst2;
vlst1 ~ vlst2;
symlist({vlst1,vlst2}).

List Operations

blst = {b1,b2,b3};
xlst = {x1,x2,x3};

blst+xlst -> {b1+x1,b2+x2,b3+x3}
blst.*xlst -> {b1*x1,b2*x2,b3*x3}
blst*xlst -> b1*x1+b2*x2+b3*x3

4.4 Symbolic Vector
A vector consisting of symbols is defined as:

v = symvec({x,y,z});
or

slist = {x,y,z};
v = symvec(slist);

All symbolic vectors are symbolic matrices with a single column. Thus all the
operations applicable to symbolic matrices apply to symbolic vectors.

21

SYMBOLIC DATA TYPES AND OPERATIONS

4.5 Symbolic Matrix
A 2x3 matrix consisting of symbols is defined as:

m = symmat(2,3,{a,b,c,d,e,f});
or

matlst = {a,b,c,d,e,f};
m = symmat(2,3,matlst);

Symbolic matrix operations closely resemble numeric operations:

Element Identification

xmat = matrix(2,2,{a,b,c,d});
xmat[2,1] is ’c’

Concatenation

q = {a,b,a}|{b,b,c};
v1 = symmat(1,2,{a,b});
v2 = symmat(1,2,{b,b});
v3 = symmat(1,2,{a,c});
v = v1|v2|v3;
m = {a}~v1;

Transpose m = x′; You may need to use (x′) to get the precedence correct.
Transpose Multiply xx = x′ ∗ x (not x′x).
Element Operations .∗ and ./ work as expected but may need parenthesis to

get precedence correct.
Matrix Multiplication x ∗ y works as in GAUSS if the type of x and y are

known. Thus if x and y are defined by a symmat statement, then there
is no problem. If x and y are symbols, then it is not clear whether these
symbols represent scalars or matrices. In the default, when x and y are
both symbols, x ∗ y generates x. ∗ y. To force matrix multiplication, use the
Maple syntax x& ∗ y. x′ ∗ y is always taken as matrix multiplication.
Example:

bhat = inv(x’*x) &* (x’*y);

22

SYMBOLIC DATA TYPES AND OPERATIONS

x and y are symbols, so they could be matrices, or scalars. The x′ ∗ x term
is recognized as requiring a matrix type mulitplication, since this opera-
tion occurs almost exclusively on matrices. However, inv(x′ ∗ x) mulitplied
by (x′ ∗ y) is a symbol times a symbol, so to ensure the required matrix
multiplication, we use the &∗ format.

Matrix Division x/y works as in GAUSS if the type of x and y are known. If
x and y are symbols, then it is not clear whether these symbols represent
scalars or matrices. In the default, when x and y are both symbols, then x/y
generates x./y. To force the matrix interpretation of x/y, use the syntax
x&/y.

Other Operations The following work as in GAUSS :
x! factorial
x%y modulo division
x. ∗ .y kronecker product
x ∗ y horizontal dircect product

Logic Operations GAUSS assumes that true = 1 and false = 0. Maple does
not use this rule. Symbolic Tools evaluates dot functions (., ., .and etc) so
as to return unity or zero as expected. Relational and boolean operators
(non dot) are used for flow control, and return true or false.

23

SYMBOLIC DATA TYPES AND OPERATIONS

24

Chapter 5

Symbolic Tools Commands
- Summary

5.1 Summary

5.1.1 GAUSS Commands

These commands are called from GAUSS.
SYMARG – Specifies data argument in Sympro.
SYMDEBUG – Controls debugging mode
SYMGAUSS – Sends a GAUSS command to the Maple kernel
SYMGET – Retrieves a variable from the Maple kernel
SYMHELP – Displays online help
SYMMAPLE – Sends a GAUSS command to the Maple kernel
SYMMODE – Controls syntax mode
SYMOUT – Controls output buffer
SYMPROC – Compiles a GAUSS proc derived from symbolic code
SYMPUT – Sends a variable to the Maple kernel
SYMRUN – Sends code to the Maple kernel for execution
SYMSTATE – Controls the Maple kernel
SYMTEST – Procedure for testing AD code

25

SYMBOLIC TOOLS COMMANDS - SUMMARY

5.1.2 Maple Commands

These commands are called from within a string sent to the Maple kernel.
SYMDAT – Assign symbolic names to matrix columns - returns a list
SYMEVAL – Evaluates a Maple function that expects algebraic inputs
SYMLIST – Creates a symbolic list
SYMMAT – Creates a symbolic matrix
SYMSET – Assign symbolic names to a vector - returns a list
SYMVEC – Creates a symbolic vector

26

Chapter 6

Reference - GAUSS
commands

These commands extend the GAUSS language to allow for control over the Maple
kernel and symbolic manipulation. Symbols require a new data type - a list -
and these commands provide support for this data type.

27

SYMARG REFERENCE - GAUSS COMMANDS

Purpose
Specifies data argument in symproc.

Format
SYMARG(argn);

Inputs
argn literal, argument number.

Remarks
When using the symproc command, the user specifies the input arguments that
are required by the proc. Normally, no additional knowledge is required. How-
ever, when one of the arguments is data, symproc needs to know this to undertake
the correct dimensions of the output of the proc. The argument number of a
parameter that is data is supplied in argn.
The default value (2) is set in symbolic.dec.

Example
library symbolic;
...

call symarg(3);
call symproc("myproc","avec,bvec,dta","llf",txt);

In this example, the third input argument of myproc is data.

See also
SYMPROC

28

REFERENCE - GAUSS COMMANDS SYMDEBUG

Purpose
Controls debugging mode of Symbolic Tools.

Format
SYMDEBUG(mode);

Inputs
mode literal, debug mode (on, [off]).

Remarks
In normal operation, code is sent to the Maple kernel, and results are retrieved
from the kernel with no output from the kernel unless an error is detected.
Turning the debug mode to on results in the kernel displaying each line of Maple
code as it is executed, and displaying any file created with symproc.
The default mode is off; this is set in symbolic.dec.

Example

library symbolic;
call symdebug(on);

In this example, the debug mode is enabled.

29

SYMGAUSS REFERENCE - GAUSS COMMANDS

Purpose
Sends a GAUSS command to the kernel for execution.

Format
rslt = SYMGAUSS (txt) ;

Inputs
txt string, GAUSS command

Outputs
rslt GAUSS output

Remarks
The symgauss command executes the single GAUSS command embedded in the
string txt in the Maple kernel, and returns the result. The arguments to the
GAUSS command are automatically satisfied from the GAUSS workspace.
This facility permits the user to execute a GAUSS command under Maple, with
input and output managed seamlessly. Note that Maple is case sensitive, so the
code in txt should be lower case. Only GAUSS commands with single returns are
permitted.

Example

library symbolic;
...
let x[3,3] = 4 2 6 8 5 7 3 8 9;
rslt = symgauss("cond(x)");
"The result is: " rslt;

In this example, the GAUSS matrix x is used in the symgauss command to derive
the condition number of x using the Maple kernel. The result is returned and
displayed by GAUSS.

30

REFERENCE - GAUSS COMMANDS SYMGET

Purpose
Retrieves a variable from the Maple kernel.

Format
rslt = SYMGET (name) ;

Inputs
name string, variable name

Outputs
rslt GAUSS variable

Remarks
The symget command retrieves a variable from the Maple kernel, and stores it
in the GAUSS workspace. Valid data types are Maple matrices, vectors, scalars
and strings. Numeric data is stored as regular GAUSS variables, while a symbolic
result is stored as a string. Memory allocation and type recognition are taken
care of automatically.

Example

library symbolic;
...

rslt = symget("llfg");
"The result is: " rslt;

In this example, a Maple variable, llfg, is retrieved and displayed by GAUSS.

31

SYMHELP REFERENCE - GAUSS COMMANDS

Purpose
Displays the Symbolic Tools online help

Format
SYMHELP ;
SYMHELP (topic);

Inputs
topic literal, Maple topic

Remarks
The symhelp command with no arguments displays the online help file. If topic
is specified, the appropriate Maple help file is displayed in Notepad.

Example

library symbolic;
symhelp;
symhelp (linalg);
symhelp codegen;

The first call to symhelp brings up the online help facility. The second and third
calls show alternative methods of retrieving the Maple help page for linalg and
codegen respectively.

32

REFERENCE - GAUSS COMMANDS SYMMAPLE

Purpose
Sends a Maple command to the kernel for execution.
Format

rslt = SYMMAPLE (txt, mode) ;
Inputs

txt string, Maple command
mode literal, evaluation mode

Outputs
rslt GAUSS output

Remarks
The symmaple command executes the Maple command embedded in the string
txt in the Maple kernel, and returns the result. The arguments to the Maple
command are automatically satisfied from the GAUSS workspace.
mode determines how the arguments are treated. mode is set to zero for those
cases where the entire argument is treated as a whole, such as the determinant
of a matrix. mode is set to unity for those cases where the function is evaluated
on each element of the argument, such as sin.
This facility permits the user to execute a Maple command under Maple, with
input and output managed seamlessly. Note that Maple is case sensitive, so the
code in txt should be correctly cased for Maple. Only Maple commands with
single returns are permitted.
Example

library symbolic;
...
let x[3,3] = 4 2 6 8 5 7 3 8 9;
rslt = symmaple("ratform(x)",0);
"The result is: " rslt;

In this example, the GAUSS matrix x is used in the symmaple command to derive
the rational canonical form (or Frobenius form) of x using Maple. The result is
returned and displayed by GAUSS.

33

SYMMODE REFERENCE - GAUSS COMMANDS

Purpose
Controls the Symbolic Tools syntax.

Format
SYMMODE (mode) ;

Inputs
mode literal, operating mode ([Gauss], Maple)

Remarks
In the default, GAUSS code is parsed to Maple format prior to being sent to the
Maple kernel. Pure Maple code can be also sent to the kernel, in which case no
parsing is required. The default mode (GAUSS) is set in symbolic.dec

Example

library symbolic;
call symmode(maple);
txt = " with (linalg);

x:=matrix(2,2,[1,2,3,4]);
z:=trace(x); ";

call symrun(txt);

In this example, parsing is turned off, so the raw code is sent to Maple as is.

34

REFERENCE - GAUSS COMMANDS SYMOUT

Purpose
Controls the Symbolic Tools output buffer.

Format
SYMOUT (mode) ;

Inputs
mode literal, output mode

Remarks
This command provides a diary of the Maple output. mode takes the following
values:

mode on Turns on the output buffer.
off Turns off the output buffer.
reset Clears and initializes the output buffer.
view Displays the output buffer using Microsoft Notepad,

and clears the output buffer.

Example

library symbolic;
call symout(reset);

...
call symout(view);

In this example. the output buffer is cleared, some commands are carried out,
and the buffer is then viewed using Notepad.

35

SYMPROC REFERENCE - GAUSS COMMANDS

Purpose
Creates and compiles a GAUSS proc derived from symbolic code.
Format

prc = SYMPROC(pname, inarg, outarg, txt);
Inputs

pname string, proc name
inarg string, input arguments
outarg string, output argument
txt string, symbolic code

Outputs
prc string, GAUSS proc

Remarks
The symproc command creates and compiles a GAUSS proc based on symbolic
code evaluated by the Maple kernel. In a trivial example, if one had a function
sin(x), and wished to have access to a proc that was the gradient of this function,
then that proc would simply return cos(x). symproc automates this process. The
GAUSS code is parsed, sent to the Maple kernel, and executed. Maple takes the
required value (say a gradient), and returns the optimized code to create this
gradient. Symproc reparses this optimized code to be a GAUSS compatible proc,
and compiles the proc. This proc is then accessible for use by the user.
The idea behind writing code for a symbolic process is to compose the code based
on a single (symbolic) observation. Symbolic Tools takes care of creating a proc
for n observations. Since all symbols will become matrices when the proc is run
under GAUSS, all operations will be dot evaluated.
In most cases, a single argument (a parameter vector) is passed to the compiled
proc. Symbolic Tools is usually able to ascertain all the information needed from
the code itself. An exception is where data is passed to the proc as an argument,
in which case one should use the symarg command to specify which argument is
data.
For the most part, the Maple kernel will evaluate GAUSS commands as Maple
code. Note that Maple is case sensitive, so the code in txt should be lower case.
However, you can force a GAUSS evaluation of a GAUSS command by capitalizing
the command.

36

REFERENCE - GAUSS COMMANDS SYMPROC

Example
library optmum, symbolic;
optset;
call symstate(reset);

... load data y, x1 - x5

proc fct(avec);
local indx, llf;
indx = avec[1] + avec[2]*x1 + avec[3]*x2 + avec[4]*x4^avec[5]

+ avec[6]*ln(x5+avec[7]);
llf = sumc((y-indx)^2);
retp (llf);

endp;

txt = "
slist = symset(bpar,a,7);
indx = a1 + a2*x1 + a3*x2 + a4*x4^a5 + a6*ln(x5+a7);
llf = sumc((y-indx)^2);
llfg = gradp(llf,slist);
llfh = hessp(llf,slist);

";

proc gradproc; endp;
proc hessproc; endp;

gcode = symproc("gradproc","bpar","llfg",txt);
hcode = symproc("hessproc","bpar","llfh",txt);

__opgdprc = &gradproc;
__ophsprc = &hessproc;
avec0 = ones(7,1);
{x, f, g, retcode} = optmum(&fct,avec0);

This example shows how one would estimate a non-linear least squares problem
using the GAUSS optmum command. The libraries are specified, and each package
is set. Optmum requires pointers to procedures that return the function to be
minimized, and optionally the gradient and Hessian. The function is specified
in fct, which requires 7 parameters, and the data (y, x1-x5) is in core. The
equivalent symbolic GAUSS code is supplied as a string (txt), augmented with
the code to generate the gradient and Hessian. GAUSS procs for the gradient
and Hessian are generated by symproc, as shown. Note the dummy procs for

37

SYMPROC REFERENCE - GAUSS COMMANDS

the gradient and Hessian — these are needed so that GAUSS can compile the
program. Note also that the code for these procs is returned in gcode and hcode
respectively, so it is easy to cut and past the code into your program if the
model specification does not change - ie. once Symbolic Tools has generated
the gradient and Hessian, it doesn’t need to be run again. Optmum requires that
pointers to user supplied gradients and Hessians are placed in __opgdprc and
__ophsprc respectively. A starting value for the parameters is specified, and the
optimization is carried out by Optmum.

38

REFERENCE - GAUSS COMMANDS SYMPUT

Purpose
Sends a variable to the Maple kernel.
Format

SYMPUT (var, name) ;
Inputs

var literal, GAUSS variable
name string, variable name

Remarks
The symput command send a GAUSS variable var to the Maple kernel, and stores
it under the name vname. The supported data types are shown below.
Supported

Real matrix
Complex matrix
Real vector
Complex vector
Real scalar
Complex scalar
String

Not Supported
Character vector
Sparse matrix
Array
String Array
Structures
Data set

Example
library symbolic;
call symstate(reset);
x = rndu(5,2);
call symput(x,"xmat");

In this example, the GAUSSmatrix x is sent to the Maple kernel and stored under
the name xmat.

39

SYMRUN REFERENCE - GAUSS COMMANDS

Purpose
Executes GAUSS or Maple code using the Maple kernel,

Format
SYMRUN (txt) ;

Inputs
txt string, code

Remarks
The symrun command executes the code embedded in the string txt by the Maple
kernel. If symmode has been set to GAUSS, the code is first parsed. No output is
returned unless an error is trapped, or unless symdebug has been set to ON. Note
that Maple is case sensitive, so the code in txt should be lower case.
This facility permits the user to execute GAUSS code under Maple. This can
be used to allow for symbolic operations in GAUSS, to allow for grater precision
than is available in GAUSS, and to extend the GAUSS language through the use
of Maple commands.

Example

1. library symbolic;
...
txt = "x = symmat(2,2,{a,b,c,d}); detx = det(x);" ;
call symrun(txt);
detx = symget("detx");
"The result is: " detx;

2. txt1 = "
fx= (c1-x)/(c0-c1*x+c2*(x^2));

intg = intquad(fx,{x});
";
call symout(on);
call symrun(txt1);
call symout(view);

40

REFERENCE - GAUSS COMMANDS SYMRUN

3. let a[3,3] = 1 2 3 1 2 3 1 5 6;
call symput(a,"a");
call symrun("ca = charpoly(a,x);");
ca = symget("ca");
"The charpoly of a is " ca;

In the first example, the determinant of the symbolic matrix x is evaluated by the
kernel, and retrieved and displayed by GAUSS. In the second example, a Pearson
function is defined, and the symbolic integral is evaluated by the kernel, and
then displayed using the viewer. In example 3, the GAUSS language is extended
by using the Maple charpoly function.

41

SYMSTATE REFERENCE - GAUSS COMMANDS

Purpose
Controls the Symbolic Tools environment.

Format
SYMSTATE (mode) ;

Inputs
mode literal, mode (on, off, reset)

Remarks
mode can take three values:

on Initialize the Symbolic Tools environment.
off Closes the Symbolic Tools environment.
reset Reinitialize the Symbolic Tools environment.

This command is required to initiate the Symbolic Tools environment. Once
loaded, the Maple kernel records all Symbolic Tools activity. The reset mode
clears the Maple workspace (like new in GAUSS). A session can be started with
either mode set to on or reset.

Example

library symbolic;
call symstate(reset);

In this example, the Maple kernel is initialized at the beginning of a session.

42

REFERENCE - GAUSS COMMANDS SYMTEST

Purpose
Provides a mechanism for testing AD code.
Format

proc f, proc g, proc h = SYMTEST (&fg, &fs, param, dta);
Inputs

&fg pointer to GAUSS procedure that returns the function.
&fs pointer to GAUSS procedure that specifies the symproc call.
param literal, typical parameter vector required by the function.
dta literal, typical data matrix required by the function (or 0).

Outputs
proc f string, symbolic code for the function proc
proc g string, symbolic code for the gradient proc
proc h string, symbolic code for the hessian proc

Remarks
To use automatic differentiation from within an optimization program, such as
Maxlik, one needs to define procedures that takes a parameter argument, and
returns the gradient and Hessian respectively. The Symbolic tools symproc com-
mand is used to create these procedures. However, before running the estimation,
one wants to make sure that the symbolic procedures are correct. symtest does
this.
fs is a GAUSS proc that provides symtest with the information needed to test the
symbolic code. fs returns 5 elements:
1 string the input argument(s) to the symbolic code eg "bvec , xmat"
2 string the text of the symbolic code
3 string the variable name for the function (llf)
4 string the variable name for the gradient (llfg)
5 string the variable name for the Hesssian (llfh)

symtest evaluates the symbolic function, gradient and Hessian, and prints out
the results along with the comparable GAUSS estimates (based on forward dif-
ferencing) for validation. Strings containing the symbolic code as GAUSS procs
for the function, gradient and Hessian are returned.
Example
See the example file ADTest.e in the symbolic\samples\AD folder.

43

SYMTEST REFERENCE - GAUSS COMMANDS

44

Chapter 7

Reference - Maple
commands

These commands extend the GAUSS language to allow for symbolic manipulation.
Symbols require a new data type - a list - and these commands provide support
for this data type. The following commands are only applicable within the Maple
kernel, and are used as part of a string that is sent to the Maple kernel.

45

SYMDAT REFERENCE - MAPLE COMMANDS

Purpose
Assign symbolic names to columns of a matrix.
Format

slst = SYMDAT (m, col);
slst = SYMDAT (m, sn, col);

Inputs
m literal, matrix name.
sn literal, symbol
col numeric, column or range

Outputs
slist list

Remarks
The symdat command assigns symbols to specified columns of a data matrix.
This facility permits the data to be entered as an argument to the procedure
created by the symproc command. Typically, if a vector x is required within a
procedure, then specifying the vector as the symbol "x" will permit GAUSS to
pick up the global vector x when the procedure is executed. However, MAXLIK
requires that both the parameter vector and the data be arguments to pro-
cedures that return gradients and Hessians, and symdat provides the required
functionality.
Example

1. y = symdat(dta,1);

2. xlist = symdat(dta,x,2:4);
indx = x1*b1+x2*b2+x3*b3;

3. xlist = symdat(xmat,v,5);

The first example assigns the symbol y to the first column of the matrix dta. The
second example creates three symbols - x1, x2, x3 - corresponding to columns
2, 3 and 4 of dta respectively. xlist is a list of these three symbols - ie xlist =
{x1,x2,x3}. The creation of an index is also shown in this example. In the third
example, five symbols are created (v1 through v5) corresponding to the the first
five columns of xmat.
See also
SYMPROC

46

REFERENCE - MAPLE COMMANDS SYMEVAL

Purpose
Evaluates a Maple function that expects algebraic inputs.

Format
rlst = SYMEVAL (fn, arg1,arg2..);

Inputs
fn literal, Maple function.
arg literal, argument

Outputs
slist result

Remarks
The symeval command is a utility function that allows the evaluation of a Maple
command that normally requires algebraic input. This can always be achieved
using the Maple map, map2 and zip commands, but symeval makes it easy.

Example

x = symmat(2,2,{a,b,c,d);
b = symeval(BesselK, 2, x);

In this example, we wish to calculate the BesselK of each of the elements of the
matrix x. BesselK objects to this, since it requires an algebraic input. symeval
permits the use of matrices for Maple functions that require algebraic input.

47

SYMLIST REFERENCE - MAPLE COMMANDS

Purpose
Creates a symbolic list.
Format

s = SYMLIST (v);
s = SYMLIST (n, sym);

Inputs
v literal, nx1 vector.
n numeric, number of elements.
sym literal, symbol

Outputs
s list

Remarks
A list in Maple is an ordered sequence of expressions or symbols. (A vector is
a one dimensional array). The symlist command enables the creation of a list,
or the conversion of a vector to a list.
Example

1. let v = 1 2 3;
call symput(v, "v");
call symrun("vlst = symlist(v);");

2. vlst = {v1, v2, v3};

3. vlst = symlist(3, v);

Example 1 shows how a vector can be converted to a list. Example 2 shows how
a list can be created from the individual entities. The same operation is carried
out in example 3; this format is useful if there are a large number of elements in
vlst.
See also
SYMSET

48

REFERENCE - MAPLE COMMANDS SYMMAT

Purpose
Creates a symbolic matrix.

Format
s = SYMMAT (n, m ,vlst);

Inputs
n numeric, row dimesnsion.
m numeric, column dimension.
vlst literal, symbolic list

Outputs
s nxm matrix

Remarks
The symmat command creates a symbolic matrix from a list.

Example

1. veclst = {a,b,c,d,e,f};
m = symmat(2,3,veclst);

2. m = symmat(2,3,{a,b,c,d,e,f});

3. v1 = symvec({a,d});
v2 = symvec({b,e});
v3 = symvec({c,f});
m = v1~v2~v3;

All three examples are equivalent. m is the 2x3 matrix:
a b c
d e f

49

SYMSET REFERENCE - MAPLE COMMANDS

Purpose
Assign symbolic names to a vector.

Format
slst = SYMSET (v, sn , ord);

Inputs
v literal, vector.
sn literal, symbol
ord literal, order or range

Outputs
slst list

Remarks
The symset command creates a symbolic list and assigns each symbol to the
corresponding element of a GAUSS vector. v is either the name of an argument
that is passed to the procedure, or is the name of a global GAUSS vector or
matrix.
Example

1. slist = symset(bpar,b,4);
indx = x1*b1+x2*b2+x3*b3;
sigma = b4;

...
llfg = gradp(llf,slist);

2. b1 = bpar[1];
b2 = bpar[2];
b3 = bpar[3];
sigma = bpar[4];
slist = {b1,b2,b3,sigma);

3. vlist = symset(bpar,v,7:9);

50

REFERENCE - MAPLE COMMANDS SYMSET

The first example is taken from a Tobit estimation, in which the first three
elements of the parameter vector, bpar, are the structural coefficients, and the
last parameter is the variance. The symset command creates a list of the four
parameters in slist, as well as associating b1 through b4 with the respective
elements of bpar. slist is needed as an argument to gradp. Equivalent code
is shown in example 2. Example 3 shows how a subset of a parameter vector
can be associated - in this case, v1, v2, and v3 are associated with bpar[7],
bpar[8] and bpar[9] respectively.

51

SYMVEC REFERENCE - MAPLE COMMANDS

Purpose
Creates a symbolic vector.

Format
s = SYMVEC (vlst);

Inputs
vlst literal, symbolic list

Outputs
s nx1 vector

Remarks
The symvec command creates a vector from a list. In the context of Symbolic
Tools , a vector is an nx1 matrix.

Example

1. veclst = {x,y,z};
v = symvec(veclst);

2. v = symvec({x,y,z});

3. v = symmat(3,1,{x,y,z});

All three examples are equivalent.

52

Chapter 8

GAUSS functions

The following list provides information on the functionality of each GAUSS com-
mand in a Symbolic Tools context. Note that these functions are case sensitive.

Notes

1. In symproc mode, matrix arguments must be passed either as a single pa-
rameter, (a scalar symbol), or as a numeric matrix.

2. Does not work in symproc mode, since code optimization is not compatible
with user specified order.

3. Requires numeric argument.
4. In symproc mode, requires integer argument.
5. Only operates in symproc mode. Note that matrix arguments must be

passed as a single parameter, ie. either a scalar symbol, or the name of an
existing GAUSS matrix.

53

GAUSS FUNCTIONS

abs ok
acf ok
arccos ok
arcsin ok
atan ok
atan2 ok
base10 ok
besselj ok
bessely ok
boxcox ok
break ok
call ok
cdfbeta ok For arg(2), see notes 3 and 4.
cdfbvn ok See note 1.
cdfbvn2 ok See note 1.
cdfbvn2e na Use cdfbvn2.
cdfchic ok
cdfchii ok See note 1.
cdfchinc ok See note 5.
cdffc ok For arg(3), see notes 3 and 4.
cdffnc ok See note 5.
cdfmvn ok See note 5.
cdfgam ok
cdfn ok
cdfnc ok
cdfni ok See note 1.
cdfn2 ok
cdftc ok For arg(2), see notes 3 and 4.
cdftci ok See note 1
ceil ok
chol ok
choldn ok
cholsol ok
cholup ok
chrs ok
code ok
cols ok
complex ok
cond ok See note 1.
conj ok
conv ok
corrm ok
corrvc ok

54

GAUSS FUNCTIONS

corrx ok
cos ok
cosh ok
counts ok See note 1.
countwts ok See note 1.
crossprd ok
crout na Use lu.
croutp na Use lu.
cumprodc ok
cumsumc ok
curve ok See note 5.
debug na Use symdebug.
delif ok
design ok See note 1.
det ok
detl na Use det.
dfft na Use fft.
dffti na Use ffti.
diag ok
diagrv ok
digamma ok
do ok
dummy ok See note 1.
dummybr ok See note 1.
dummydn ok See note 1.
eig ok
eigh na Use eig.
eighv na Use eigv.
eigv ok Normalization for eigenvectors may differ from GAUSS.
eqsolve ok Solves numerically using fsolve.
erf ok
erfc ok
exp ok
eye ok
fft ok
ffti ok
fftm ok See note 5.
fftmi ok See note 5.
fftn na Use fft.
floor ok
fmod ok
for na Use do.
gamma ok
gammaii ok See note 1.

55

GAUSS FUNCTIONS

gradp ok Overloaded to provide symbolic differential
symbolic: gradp(f(x, y), x, y);
numeric: gradp(f(x, y), x, y, x0); x0 is a 2x1 vector.

hasimag ok
hess ok See note 1.
hessp ok Overloaded to provide symbolic differential.

symbolic: hessp(f(x, y), x, y);
numeric: hessp(f(x, y), x, y, x0); x0 is a 2x1 vector.

if ok
imag ok
indexcat ok See note 1.
indnv ok See note 1.
intgrat na Use intquad.
intquad ok Overloaded to provide indefinate integral.

symbolic: intquad(f(x, y), x, y);
numeric: intquad(f(x, y), x, y, x0);
1st row of x0 is upper bound, second row is lower bound.
Upper and lower bounds can be functions. (as in intgrat).

intrsect ok 3rd parameter is ignored, and is optional.
intsimp na Use intquad.
inv ok
invpd ok
invswp na Use pinv.
iscplx ok See note 1.
isinfnanmiss ok
ismiss ok
lag1 ok
lagn ok
let na use symvec and symmat.
ln ok
lncdfbvn ok See note 1.
lncdfbvn2 ok See note 1.
lncdfmvn ok See note 5.
lncdfn ok
lncdfn2 ok
lncdfnc ok
lnfact ok
lnpdfn ok
lnpdfmvn ok
lnpdfmvt ok
lnpdft ok
log ok
lower ok

56

GAUSS FUNCTIONS

lowmat ok
lowmat1 ok
ltrisol na Use solpd.
lu ok
lusol na Use solpd.
machepsilon ok
matalloc ok
matinit ok Uses the equivalent GAUSS function in symproc mode.
max ok The function max(b0,b1) is supplied.
maxc ok If argument has more than 2 elements, see note 1.
maxindc ok See note 1.
mbesseli ok
meanc ok
median ok See note 1.
minc ok If argument has more than 2 elements, see note 1.
minindc ok See note 1.
miss ok
missex ok
missrv ok
moment ok
new na Use symstate(reset).
null ok See note 1.
ols ok Returns coefficient vector.
olsqr ok
olsqr2 ok
ones ok
orth ok See note 1.
pacf ok
packr ok See note 1.
pdfn ok
pi ok
pinv ok
polychar ok
polyeval ok
polyint ok
polymake ok
polymat ok
polymroot na
polymult ok
polyroot ok
princomp ok See note 1.
prodc ok

57

GAUSS FUNCTIONS

QNewton na
QProg na
qqr ok
qqre na Use qqr.
qqrep na Use qqr.
qr ok
qre na Use qr.
qrep na Use qr.
qrsol ok
qrtsol ok
qtyr ok
qtyre na Use qtyr.
qtyrep na Use qtyr.
qyr ok
qyre na Use qyr.
qyrep na Use qyr.
quantile ok See note 1.
rank ok
rankindx ok See note 1.
real ok
recode ok
recserar ok In symproc mode, 2nd argument is treated as a scalar.
recsercp ok
recserrc ok
reshape ok
rev ok
rfft na Use fft.
rffti na Use ffti.
rndbeta ok See note 1.
rndgam ok See note 1.
rndi ok
rndKM na Use the equivalent rnd function.
rndLC na Use the equivalent rnd function.
rndn ok
rndnb ok See note 1.
rndns ok
rndp ok See note 1.
rndseed ok See note 2.
rndu ok See note 1.
rndus ok
rndvm ok See note 1.
rotater ok
round ok

58

GAUSS FUNCTIONS

rows ok
rref ok See note 1.
scalinfnanmiss ok
scalmiss ok
schtoc na
schur ok See note 3.
selif ok
seqa ok
seqm ok
setdif ok See note 1.
shiftr ok
sin ok
sinh ok
solpd ok
sortc ok See note 1.
sortind ok See note 1.
sortindc na
sortmc ok See note 5.
spline na
sqpsolve na
sqrt ok
stdc ok
strindx ok
strlen ok
strput ok
strrindx ok
strsect ok
submat ok
subscat ok
substute ok
sumc ok
svd ok
svd1 ok See note 3.
svd2 ok See note 3.
svdcusv na Use svd2.
sdvs na Use svd.
tan ok
tanh ok
toeplitz ok
trigamma ok
trimr ok
trunc ok
type ok

59

GAUSS FUNCTIONS

typecv na Use type.
union ok
uniqindx ok See note 1.
unique ok See note 1.
upmat ok
upmat1 ok
upper ok
utrisol ok
vals ok
varmares na
vcm ok
vcx ok
vec ok
vech ok
vecr ok
xpnd ok
zeros ok

60

Index

AD debugging 43
commands

— summary 25
— symarg 28
— symdat 46
— symdebug 29
— symeval 47
— symgauss 30
— symget 31
— symhelp 32
— symlist 48
— symmaple 33
— symmat 49
— symmode 34
— symout 35
— symproc 36
— symput 39
— symrun 40
— symstate 42
— symtest 43

data argument 28
debugging 29
help 32
installation 7
kernel

— execute 30, 33, 40
— initialization 42
— retrieve 31

— send 39
output 35
symbolic

— element 20
— evaluation 47
— list 20, 48
— matrix 22, 46
— proc 36
— vector 21

syntax 34

	Symbolic Tools
	Contents
	Introduction
	Concept
	Symbolic Modes
	Example Files

	Installation and Testing
	Installation Requirements
	Installing Symbolic Tools
	Testing Symbolic Tools

	Tutorial
	Example 1
	Example 2
	Example 3
	Example 4

	Symbolic Data Types and Operations
	Data Types
	Symbolic Elements
	Symbolic List
	Symbolic Vector
	Symbolic Matrix

	Symbolic Tools Commands
	Summary
	GAUSS Commands
	Maple Commands

	Reference - GAUSS Commands
	Symarg
	Symdebug
	Symgauss
	Symget
	Symhelp
	Symmaple
	Symmode
	Symout
	Symproc
	Symput
	Symrun
	Symstate
	Symtest

	Reference - Maple Commands
	Symdat
	Symeval
	Symlist
	Symmat
	Symset
	Symvec

	GAUSS functions
	Index

