GAUSSX 10 Update

By Econotron Software, Inc. www.Econotron.com

Now Available!

New Features and Enhancements:

- ▶ x64 version
- ▶ GAUSS 11 support
- COPULA Gaussian copulas
- CORR Rank correlation matrix
- MVRND Random draws from correlated multivariate distributions
- ▶ Stepwise regression
- ▶ LHS Latin Hypercube Sample
- ▶ Statlib update

Gaussx 10 has been redesigned for platform compatibility.

Gaussx for Windows runs as a 32-bit Windows application when it runs under a 32-bit version of GAUSS, and as a

64-bit application when run under a 64-bit version of GAUSS. A summary of the new routines implemented since Gaussx 9.0 are described below. A more detailed description of these routines is available at

http://www.econotron.com/gaussx/readme2.htm

A full description of Gaussx is available at

http://www.econotron.com/gaussx

Product Details

▶ 64-bit support

Gaussx will run under either GAUSS x86 or GAUSS x64. In each case Gaussx recognizes which version of GAUSS that is being used, and configures itself accordingly.

GAUSS 11 support

Gaussx has been updated to support the new GAUSS 11 interface, and to incorporate the new functionality of GAUSS 11. Gaussx supports GAUSS 6 through 11.

▶ Copulas

A copula is used in statistics as a general way of formulating a multivariate distribution with a specified correlation structure:

Example:

```
let rmat[3,3] = 1 .5 .2 .5 1 .6 .2 .6 1;
q=copula(1000,rmat,1);
v1=normal_cdfi(q[.,1],0,1);
v2=expon_cdfi(q[.,2],2);
v3=gamma_cdfi(q[.,3],1.5,2.5);
```

q is a 1000x3 copula matrix with a Kendall Tau correlation structure given by rmat. This copula is then used to create three correlated random deviates drawn from the normal, exponential and gamma distributions.

▶ CORR

Computes a correlation matrix for different correlation types - Pearson, Kendall Tau b and Spearman Rank.

Aptech Systems, Inc.
P.O. Box 250 • Black Diamond, WA 98010 USA
Phone: (360) 886-7100 • FAX: (360) 886-8922
Info@Aptech.com • URL: www.Aptech.com

MVRND

Creates a matrix of (pseudo) correlated random variables using specified distributions.

Example:

```
dist = "normal" $| "expon" $| "gamma";
let p[3,3] = 0 1 0 0 2 0 0 0 1.5 2.5 0 0;
let rmat[3,4] = 1 .5 .2 .5 1 .6 .2 .6 1;
s = mvrnd(1000, 3, dist, p, rmat, 2);
```

This example creates s, which is a 1000x3 matrix of correlated random variates consisting of the three distributions shown in dist, with the correlation structure specified by the Spearman rank matrix rmat.

▶ STEPWISE

In a situation where there are a large number of potential explanatory variables, STEPWISE can be useful in ascertaining which combination of variables are significant, based on the F statistic. It includes the capability of scaling data, and expanding a given data set to include cross and/or quad terms. This is an exploratory, rather than a rigorous tool.

Example:

```
oplist = { .4 .25 };
indx = stepwise(y~xmat, 0, oplist);
{xnew, xname} = xmat[.,indx];
```

This example shows how a stepwise regression is applied to a matrix of potential explanatory variables xmat, using .4 and .25 for the F statistic probability of entry and exit.

▶ Latin Hypercube Sample - LHS

LHS has the advantage of generating a set of samples that more precisely reflect the shape of a sampled distribution than pure random (Monte Carlo) samples. The Gaussx implementation provides standard LHS, nearly orthogonal LHS, and correlation LHS.

Example:

```
n = 30; k = 6;
fill = 0; ntry = 1000; crit = 2;
dsgn = fill | ntry | crit;
p = lhs(n,k,dsgn);
x = weibull cdfi(p,1,1.5);
```

In this example, a 30x6 nearly orthogonal Latin Hypercube Sample is derived using the best condition number as the criteria. This creates a 30x6 matrix of probabilities, which are then used to create a set of Weibull distributed variates, each column being orthogonal to every other column.

STATLIB - Statistical Distribution library

The STATLIB library has been updated; it now includes 51 continuous distributions, and 9 discrete distributions. This library can be used independently of Gaussx, or as part of Gaussx - for example in an ML context.

For each of the distributions given below, the following functionality is provided:

fn_llf	likelihood function
fn_pdf	probability density function
fn_cdf	cumulative density function
fn_cdfi	inverse cumulative density function
fn rnd	random number generator

Continuous functions:

beta	beta4	boxcox
burr	cauchy	chisq
chisq_scaled	erf	expon
f	f_scaled	fatiguelife
fisk	foldednormal	frechet
gamma	ged	gengamma
genlogistic	genpareto	halfnormal
invgamma	invgauss	johnson_sb
johnson_sl	johnson_su	laplace
lev	levy	loggamma
logistic	loglog	lognorm
maxwell	ncchisq	ncf
nct	normal	pareto
pearson	pert	power
rayleigh	reciprocal	sev
skewnormal	students_t	t_scaled
triangular	uniform	vonmises
weibull		

Discrete functions:

Bernoulli Binomial Geometric
Hypergeometric Logarithmic Negative Binomial
Poisson Step Uniform

In the context of ML estimation, the parameters of a particular distribution can be estimated from a set of data, or a parameter can be replaced by a linear or non-linear function, whose parameter can also be estimated. Threshold estimates for distributions where the data is non-negative is also supported.

Example:

```
x = seqa(0,.2,6);
a = 2; b = 4;
p = beta_pdf(x,a,b);
param b0 b1;
value = .1 1;
FRML eq1 v = b0 + b1*x;
FRML eq2 llfn = chisq_llf(y,v);
ML (d,p,i) eq1 eq2
method = nr nr nr;
```

The first example shows pure GAUSS code for estimating the pdf for a beta distribution. The second shows how the parameters of a function which is used to replace a parameter in a distribution can be evaluated.

Contact Aptech or your local dealer for pricing and information

See our website for the

Dealer nearest you:

http://www.Aptech.com