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Abstract

This study describes a new Stata routine that computes a bias-corrected
LSDV estimator and its bootstrap variance-covariance matrix. A Monte
Carlo analysis is carried out to compare the finite-sample performance of the
corrected LSDV estimator with the inconsistent LSDV estimator and con-
sistent estimators, such as the Arellano-Bond GMM estimator, Anderson-
Hsiao IV estimator, and Blundell-Bond system estimator.

1. Introduction

Situations in which past decisions have an impact on current behaviour are ubiq-
uitous in economics. To mention just one of the many examples that may come
to mind, in the presence of employment adjustment costs the short-run labour
demand of the firm will depend on past employment levels. Another crucial issue
in empirical economics, strictly related to the modelling of dynamic relationships,
is the presence of unobserved heterogeneity in individual behaviour and character-
istics. Panel data sets, where the behaviour of N cross-sectional units is observed



over T time periods, provide a solution to accommodating the joint presence of
dynamics and unobserved individual heteogeneity in the fhonomena of interest.

Nickell (1981) has demonstrated that the Least Square Dummy Variable esti-
mator (LSDV) for autoregressive panel data models is not consistent for finite T .
Since then, a number of consistent estimators, based upon internal instrumental
variables, have been proposed in the econometric literature. Anderson and Hsiao
(1982) (AH) suggest two simple IV estimators that, upon transforming the model
in first differences to eliminate the unbserved individual heterogeneity, use the
second lags of the dependent variable, either differenced or in levels, as an instru-
ment. Arellano and Bond (1991) (AB) propose a GMM estimator for the first
differenced model which, relying on a greater number of internal instruments, is
more efficient than AH. Blundell and Bond (1998) (BB) remark that with highly
persistent data first-defferenced IV or GMM estimators may suffer of a severe
small sample bias due to weak instruments. As a solution, they suggest a system
GMM estimator with first-differenced instruments for the equation in levels and
instrument in levels for the first-differenced equation.

One weakness of all foregoing estimators is that their properties hold for N
large, so they can be severely biased and imprecise in panel data with a small num-
ber of cross-sectional units, such as most macro panels. An alternative approach to
IV-GMM estimation, which is based on the bias-correction of LSDV, has recently
gained popularity in the econometric literature. Nickell (1981), upon proving his
inconsistency result, derives an expression for the inconsistency for N → +∞,
which is bounded of order T−1. Kiviet (1995) uses higher order asymptotic ex-
pansion techniques to approximate the small sample bias of the LSDV estimator
to include terms of at most order N−1T−1. Those approximations are evaluated
at the unobserved true parameter values, so they are of no direct use for estima-
tion. To make them operational for bias correction and estimation, Kiviet (1995)
suggests to replace, in the approximation formulae, the true parameters with the
estimates from some consistent estimators. Monte Carlo evidence in Kiviet (1995)
shows that the bias-corrected LSDV estimator (LSDVC) often outperform the IV-
GMM estimators in terms of bias and root mean squared error (RMSE). Another
piece of Monte Carlo evidence by Judson and Owen (1999) strongly supports the
LSDVC when N is small or only moderately large. In Kiviet (1999) the bias
expression is more accurate to include terms of at most order N−1T−2. Bun and
Kiviet (2003), upon simplifying Kiviet’s (1999) approximation, carry out Monte
Carlo experiments showing that the first order term of the approximation eval-
uated at the true parameter values is already capable to account for more than
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90% of the actual bias. Bruno (2004) extends the bias approximations in Bun
and Kiviet (2003) to accommodate unbalanced panels with a strictly exogenous
selection rule. Monte Carlo evidence therein parallels Bun and Kiviet’s (2003).
This paper presents a Stata routine xtlsdvc, which 1) implements LSDVC

building upon the theoretical approximation formulas in Bruno (2004) and 2) esti-
mates a bootstrap variance covariance matrix for the corrected estimator. Monte
Carlo experiments are also carried out to evaluate the performance of LSDVC
and other dynamic panel data estimators in terms of bias and RMSE for N small
(10 and 20 units). Results show that the three versions of LSDVC computed
by xtlsdvc outperforms LSDV, AB, AH and BB in terms of both criteria, so
confirming results in Judson and Owen (1999).
The structure of the paper is as follows. The next section briefly review the

theoretical results for corrected LSDV estimators. Section 3 describes the xtlsdvc
routine. Section 4 describe the implementation of the bootstrap variance-covariance
matrix. Section 5 concludes presenting the Monte Carlo results.

2. Bias corrected LSDV estimator

We consider the standard dynamic panel data model

yit = γyi,t−1 + x0itβ + ηi + �it; |γ| < 1; i = 1, ...,N and t = 1, ..., T , (2.1)

where yit is the dependent variable; xit is the ((k − 1)× 1) vector of strictly ex-
ogenous explanatory variables; ηi is an unobserved individual effect; and �it is an
unobserved white noise disturbance. Collecting observations over time and across
individuals gives

y = Dη +Wδ + �,

where y and W =

∙
y−1
...X

¸
are the (NT × 1) and (NT × k) matrices of stacked

observations; D = IN ⊗ ιT is the (NT ×N) matrix of individual dummies, (ιT
is the (T × 1) vector of all unity elements); η is the (N × 1) vector of individual
effects; � is the (NT × 1) vector of disturbances; and δ =

∙
γ
...β0
¸0
is the (k × 1)

vector of coefficients.
It has been long recognized that the LSDV estimator for model (??) is not

consistent for finite T . Nickell (1981) derives an expression for the inconsistency
for N → +∞, which is O (T−1). Kiviet (1995) obtains a bias approximation that
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contains terms of higher order than T−1. In Kiviet (1999) a more accurate bias
approximation is derived. Bun and Kiviet (2003) reformulate the approximation
in Kiviet (1999) with simpler formulas for each term. Bruno (2004) extends Bun
and Kiviet (2003) formulas to a more general version of model (??), which allows
missing observations in the interval [0, T ] for some individuals. Below, we briefly
present the approximation formulae for unbalanced data and show their use to
obtain the LSDVC.
Define a selection indicator rit such that rit = 1 if (yit, xit) is observed and

rit = 0 otherwise. From this define the dynamic selection rule s (rit, ri,t−1) selecting
only the observations that are usable for the dynamic model, namely those for
which both current values and one-time lagged values are observable:

sit =

½
1 if (ri,t, ri,t−1) = (1, 1)
0 otherwise

i = 1, ...,N and t = 1, ..., T.

Thus, for any i the number of usable observations is given by Ti =
XT

t=1
sit .

The total number of usable observations is given by n =
XN

i=1
Ti; and T = n/N

denotes the average group size. For each i define the (T × 1)-vector si = [si1..., siT ]0
and the T ×T diagonal matrix Si having the vector si on its diagonal. Define also
the (NT ×NT ) block-diagonal matrix S = diag (Si). The (possibly) unbalanced
dynamic model can then be written as

Sy = SDη + SWδ + S�. (2.2)

The LSDV estimator is given by δLSDV = (W 0AsW )
−1W 0Asy, where As =

S
¡
I −D (D0SD)−1D0¢S is the symmetric and idempotent (NT ×NT ) matrix

wiping out individual means and selecting usable observations. Bias approxima-
tion formulae for unbalanced panel are the following

c1
³
T
−1´

= σ2� tr (Π) q1;

c2

³
N−1T

−1´
= −σ2�

h
QW

0
ΠAsW + tr

³
QW

0
ΠAsW

´
Ik+1 + 2σ

2
�q11tr (Π

0ΠΠ) Ik+1
i
q1;

c3

³
N−1T

−2´
= σ4�tr (Π)

n
2q11QW

0
ΠΠ0Wq1+h³

q01W
0
ΠΠ0Wq1

´
+ q11tr

³
QW

0
ΠΠ0W

´
+ 2tr (Π0ΠΠ0Π) q211

i
q1
o
;
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where Q = [E (W 0AsW )]
−1 =

h
W

0
AsW + σ2�tr (Π

0Π) e1e01
i−1
; W = E (W ); e1 =

(1, 0, ..., 0)0 is a (k×1) vector; q1 = Qe1; q11 = e01q1; LT is the (T × T ) matrix with
unit first lower subdiagonal and all other elements equal to zero;L = IN ⊗ LT ;
ΓT = (IT − γLT )

−1; Γ = IN ⊗ ΓT ; and Π = AsLΓ. With an increasing level of
accuracy, the following three possible bias approximations emerge

B1 = c1

³
T
−1´

; B2 = B1 + c2

³
N−1T

−1´
; B3 = B2 + c3

³
N−1T

−2´
. (2.3)

In principle, the above may be for use to obtain bias corrected LSDV estimators
by subtracting the bias approximation from the LSDV estimate. In practice,
however, the approximations in (2.3) depend upon the unobserved parameters
σ2� and γ. Consistent bias corrected estimators can still be obtained by plugging
consistent estimators for σ2� and γ into the bias approximations formulae and then
depuring the LSDV estimator from the resulting bias approximations estimates
as follows:

LSDV Ci = LSDV − bBi, i = 1, 2, and 3.

AH, AB, or BB are all consistent estimators for γ, and can be for use to initialize
the bias approximations. Consistent estimators for σ2� are obtained plugging the
residuals in levels from the initial estimator of choice ei, i = AH,AB,BB into
the formula bσ2i = e0Ase

(N − k − T )
.

3. The xtlsdvc routine

The Stata routine xtlsdvc written by the author calculates LSDVC using the bias
approximations derived by Kiviet (1999), Bun-Kiviet (2003) and Bruno (2004) for
the standard autoregressive panel data model (2.1). The basic syntax of xtlsdvc
is the following

xtlsdvc depvar [varlist], initial(estimator ) [bias(#) vcov(#)]

So the routine can estimate the simple autoregressive model with no covari-
ates. The option initial(estimator ) is required and specifies which consistent
estimator among AH (ah) AB (ab) and BB (bb) is to initialize the bias cor-
rection.
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bias(# ) determines the accuracy of the approximation: up toO(1/T ) (#= 1);
up to O(1/NT ) (#= 2); up to O(N−1T−2) (#= 3). The default is #= 1.
vcov(# ) determines the number of bootstrap repetitions. The default is no

bootstrap computation
To work out the approximations xtlsdvc invokes the subroutine xtlsdvc 1,

which does a lot of things. In the first place, xtlsdvc 1 obtains the uncorrected
LSDV estimates via xtreg, fe.
Second, xtlsdvc 1 obtains initial estimates through one of the following in-

structions, according to which estimator is specified in initial(estimator )

if ‘‘‘initial’’’==‘‘ah’’ ivreg D.‘1’ D.(‘x’) (LD.‘1’=L2.‘1’), noconstant

if ‘‘‘initial’’’==‘‘ab’’ xtabond ‘1’ ‘x’, noconstant

if ‘‘‘initial’’’==‘‘bb’’ xtabond2 ‘1’ L.‘1’ ‘x’, gmm(L.‘1’) iv(‘x’)

noconstant

Notice that BB is implemented through the unofficial Stata routine xtabond2
by David Doorman.
Finally, xtlsdvc 1 computes the bias approximation formulae via Stata matrix

commands, and use these to correct the LSDV estimates.

4. Bootstrap variance matrix

Bun and Kiviet (2001) derive the asymptotic variance of the LSDVC for N large.
The estimated asymptotic standard errors, however, may provide poor approxi-
mations in small samples, so that t-statistics and confindence intervals thereby
obtained are often not reliable. Bootstrap methods, instead, generally provide
approximations to the sampling distribution of a statistic that are at least as ac-
curate as approximations based upon first-order asymptotic theory (see Horowitz
2001). This is well recognized by Bun and Kiviet (2001), who also suggest a boot-
strap approach to estimating the variance-covariance matrix of LSDVC. Given
this, xtlsdvc estimates a bootstrap variance matrix to yield standard errors, t
statistics and confidence interval.
One difficulty is brought about by the dependency in the data implied by the

autoregressive data generation process, which does not permit to adopt the official
Stata bootstrap instructions, such as bootstrap and bsample. I therefore adopt a
parametric bootstrap that explicitly takes account of both the maintained normal
distribution for the disturbances and the dependency in the DGP.
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The subroutine xtlsdvc b called in xtlsdvc by the option vcov, is designed
to yield a bootstrap sample and bootstrap LSDVC estimates. It basically follows
the steps below.

1. Upon obtaining LSDVC estimates for γ and β, GAMMAC and BETAC,
it works out residuals e to estimate the variance bσ2 = e0Ase/(N − k −
T ) and computes the N-vector of fixed effect estimates THETAC = y −
GAMMAC · y−1 −BETAC · x.

2. Obtains bootstrap errors �∗ from N
¡
0, bσ2¢ .

3. Given x, S and y0, obtains a bootstrap sample from sity
∗
it = sit(GAMMAC ·

y∗i,t−1 +BETAC · xit+ THETACi + �∗it), i = 1, ..., N and t = 1, ..., T

4. Applies CLSDV to (y∗, S, x) to yield GAMMAC∗ and BETAC∗.

While computational aspects of steps 1 and 2 are straightforward and step 4
only requires a call to the subroutine xtlsdvc 1 to calculate the corrected esti-
mates from the bootstrap sample, step 3 is instructive and deserves some explana-
tion. One possible way to implement step 3 would be to “manually” generate y∗

by recursion as a function of �∗, y0 and x. But this is both computationally cum-
bersome and unnecessary in Stata. In fact one can exploit the ability of replace
to work sequentially1 to obtain y∗ in an effortless way:

by ivar: gen obs= n

replace y= GAMMAC*L.y + BETAC*x +THETAC +EPSILON if obs>1

If the the vcov option is on then a simulate call in xtlsdvc yields a data
set of bootstrap LSDVC estimates for each coefficients, of dimension equal to
the number of repetitions vcov, from which it is then relatively easy to get the
bootstrap variance matrix via matrix accum.

5. Monte Carlo experiments

We extend Monte Carlo results in Judson and Owen (1999) under four respects.
First, we evaluate LSDVC in the presence of various unbalanced designs; second

1I learnt this from the messages by N. J. Cox and D. Kantor to Statalist on May 25, 2004 in
the thread originated by a question of Dimitriy V. Masterov.
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the performance of LSDVC is examined for each level of accuracy in the bias
approximation; third initial observations for the simulated data are generated
following the procedure by McLeod and Hipel (1978), also adopted in Kiviet
(1995) and Bruno (2004), which avoids the waste of random numbers and small
sample non-stationary problems; finally, we extend the comparison to the Blundell
and Bond system estimator.
Data for yit are generated by model (??) and for xit by

xit = ρxi,t−1 + ξit, ξit ∼ N
¡
0, σ2ξ

¢
, i = 1, ..., N and t = 1, ..., T

Initial observations yi0 and xi0 are generated following the McLeod and Hipel pro-
cedure, and are kept fixed across replications. The long-run coefficient β/ (1− γ)
is kept fixed to unity, so β = 1 − γ; σ2� is normalized to unity; γ and ρ alter-
nate between 0.2 and 0.8. The individual effects ηi are generated by assuming
ηi ∼ N

¡
0, σ2η

¢
and ση = σ� (1− γ).

Two different sample sizes are considered,
¡
N, T

¢
= (20, 20) and

¡
N, T

¢
=

(10, 40). Then, following Baltagi and Chang (1994), we control for the extent of

unbalancedness as measured by the Ahrens and Pincus index: ω = N/
h
T
PN

i=1 (1/Ti)
i

(0 < ω ≤ 1, ω = 1 when the panel is balanced). For each sample size we analyze
a case of mild unbalancedness (ω = 0.96) and a case of severe unbalancedness
(ω = 0.36). Individuals are partitioned into two sets of equal dimension: one set
contains the first N/2 individuals, each with the last h observations discarded, so
Ti = T − h; the other contains the remaining N/2 individuals, each with Ti = T .
We set T and h so that T and ω take on the desired values (the four panel designs
are summarized in Table 1).

Table 1

Unbalanced designs

N T T Ti ω

20 20 24 16 (i ≤ 10), 24 (i > 10) 0.96
36 4 (i ≤ 10), 36 (i > 10) 0.36

10 40 48 32 (i ≤ 5), 48 (i > 5) 0.96
72 8 (i ≤ 5), 72 (i > 5) 0.36

Results are presented in Tables 2 to 8. Columns 1 to 4 show the parametriza-
tions for each panel design. Columns 5 to 8 show the actual biases and RMSE,
as estimated by 1000 Monte Carlo replications. There are the following results:
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1) LSDVC estimators and AH have smaller bias than AB, BB and LSDV, with
LSDVC3 performing slightly better than LSDVC1 and LSDVC2;
2) The LSDVC estimators have always the smallest RMSE (with almost no

difference among their values); BB outperforms AB and AH in terms of RMSE
when γ = 0.8, which confirms the good properties of this estimator compared to
the other IV-GMM estimators in the presence of persistent data.
3) Similarly to what found for the LSDV estimator (Bruno 2004), the AB bias

for γ is always negative, and for given sample size it increases in absolute value
from a situation of severe unbalancedness to one of mild unbalancedness.
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Table 2 - Bias and RMSE for LSDVC1
T_bar gamma rho omega biasg biasb rmseg rmseb

20 .2 .2 .36 .0009245 -.0004889 .0316791 .0338265
  .96 -.0010353 .0002179 .0317222 .0317046

.8 .36 -.0001824 .001967 .0415252 .0509138
 .96 -.0028064 .0013429 .0416356 .0478705

.8 .2 .36 -.0044393 .0005215 .0420813 .0466577
 .96 -.0109681 .0023227 .0493088 .0437075
.8 .36 -.0090435 .0102203 .0442876 .0976472
 .96 -.0160311 .007573 .0522807 .0946199

40 .2 .2 .36 -.0007711 .000533 .0291177 .03064
 .96 .0004107 .0009087 .0301973 .0314352
.8 .36 -.0016842 .0017955 .0371284 .0457735
 .96 -.002104 .0024408 .0390377 .0475498

.8 .2 .36 -.0045677 .0011056 .035633 .0418122
 .96 -.0046756 .0019419 .0402499 .0431623
.8 .36 -.0078901 .0051748 .0369022 .0828885
 .96 -.0081098 .0068609 .0417089 .0903033

Table 3 - Bias and RMSE for LSDVC2
T_bar gamma rho omega biasg biasb rmseg rmseb

20 .2 .2 .36 .0013828 -.0005394 .031752 .0338287
  .96 -.0005959 .0001571 .0317667 .0317073

.8 .36 .0016328 .0006377 .0417097 .0509261
 .96 -.0010311 .0000655 .0417097 .0479059

.8 .2 .36 -.0018164 .0002438 .0417066 .046602
 .96 -.0093658 .0020657 .048605 .0436447
.8 .36 -.0051701 .0086439 .0433376 .0970544
 .96 -.0133335 .0065981 .0509757 .0942635

40 .2 .2 .36 -.0002465 .0004508 .029162 .0306411
 .96 .0008694 .0008377 .0302575 .0314349
.8 .36 .0002452 .0003092 .0372328 .0458098
 .96 -.0003106 .0011665 .0391328 .0475448

.8 .2 .36 -.0012931 .0009272 .0353549 .0417702
 .96 -.0019162 .0017056 .0398336 .0431113
.8 .36 -.0031026 .0035811 .0360539 .0824068
 .96 -.0041066 .0052805 .040722 .0896985



Table 4 - Bias and RMSE for LSDVC3
T_bar gamma rho omega biasg biasb rmseg rmseb

20 .2 .2 .36 .0014641 -.0005441 .031759 .0338289
  .96 -.0005014 .0001509 .0317704 .0317075

.8 .36 .0018484 .0004942 .0417344 .0509306
 .96 -.000765 -.0001018 .0417271 .0479154

.8 .2 .36 .0000738 .0003515 .0421739 .0466294
 .96 -.0069319 .0022293 .0488864 .0436908
.8 .36 -.002921 .0083706 .0436828 .0969786
 .96 -.010371 .0065259 .0510864 .0942876

40 .2 .2 .36 -.0002043 .000447 .0291636 .0306412
 .96 .0009136 .0008354 .0302609 .0314349
.8 .36 .0003583 .0002292 .0372419 .0458137
 .96 -.0001895 .0010897 .0391422 .0475468

.8 .2 .36 -.0001048 .0010342 .0356005 .041791
 .96 -.0004599 .0018114 .0402802 .0431432
.8 .36 -.0016648 .0035682 .0362392 .0824121
 .96 -.0023425 .0051547 .0411135 .08966

Table 5 - Bias and RMSE for LSDV
T_bar gamma rho omega biasg biasb rmseg rmseb

20 .2 .2 .36 -.0186003 .0026124 .03475969 .03171351
  .96 -.0206904 .0024458 .036033 .03094203

.8 .36 -.0341074 .0237528 .05177297 .05319765
 .96 -.0384191 .0259202 .05474859 .05394533

.8 .2 .36 -.071874 .0009678 .08149128 .04341144
 .96 -.102302 .0025734 .10974099 .04250643
.8 .36 -.0764733 .0198458 .08611078 .09603974
 .96 -.1079767 .0227776 .11529486 .10091283

40 .2 .2 .36 -.0106499 .0018243 .03075492 .03115142
 .96 -.0111183 .0016097 .03117665 .03035194
.8 .36 -.0191085 .0141342 .0423936 .04769103
 .96 -.020125 .0138981 .04292468 .04824044

.8 .2 .36 -.0403881 .0005159 .05310024 .04233602
 .96 -.0509953 .0011064 .06187778 .04148672
.8 .36 -.0431944 .0112386 .05571677 .08523298
 .96 -.0541936 .0153366 .06495815 .09248403



Table 6 - Bias and RMSE for AB
T_bar gamma rho omega biasg biasb rmseg_ab rmseb_ab

20 .2 .2 .36 -.0128776 .0015874 .0347909 .0350232
  .96 -.0239933 .0017314 .0420994 .0355005

.8 .36 -.0246808 .0187586 .0492928 .0564952
 .96 -.0479408 .0277483 .0679876 .0679272

.8 .2 .36 -.0631038 .000915 .0747191 .048357
 .96 -.1251995 -.0044139 .1361182 .0489714
.8 .36 -.0675136 .0222996 .0791658 .1102517
 .96 -.1325255 .0105755 .1437831 .1333462

40 .2 .2 .36 -.0095857 .0020386 .0315973 .0313583
 .96 -.0103288 .002389 .031875 .0318943
.8 .36 -.0166076 .0136266 .041525 .0496638
 .96 -.0212308 .0160233 .0444612 .0511996

.8 .2 .36 -.0361703 .0016914 .0508281 .0430401
 .96 -.0541241 .0021377 .066266 .0437742
.8 .36 -.0391365 .016738 .0535898 .0931464
 .96 -.058333 .0206379 .0704791 .1005256

Table 7 - Bias and RMSE for AH
T_bar gamma rho omega biasg biasb rmseg rmseb

20 .2 .2 .36 .0007931 -.0006818 .0530118 .0432421
  .96 .001949 .0002788 .0545912 .0414707

.8 .36 .0027442 -.0018707 .0795219 .0867377
 .96 .0036936 -.0024141 .0845096 .0821282

.8 .2 .36 .0015273 -.001124 .1162832 .0600471
 .96 .005175 -.0002034 .1264431 .0583466
.8 .36 -.000178 -.0037288 .119818 .1936035
 .96 .0036215 -.0039259 .1307414 .1849488

40 .2 .2 .36 .0009434 .0004701 .0506028 .0402221
 .96 .0024968 .0014705 .048068 .0399225
.8 .36 .0018987 -.0012918 .0758458 .0816262
 .96 .0031666 .0016689 .0725531 .0809884

.8 .2 .36 .0025558 .0005222 .1047245 .0574333
 .96 .0040237 .0010672 .1042672 .056041
.8 .36 .0013405 -.0016681 .10872 .183177
 .96 .0019004 .0034271 .1075766 .1829914



Table 8 - Bias and RMSE for BB
T_bar gamma rho omega biasg biasb rmseg rmseb

20 .2 .2 .36 .2003259 -.0608659 .2026836 .070825
  .96 .2311884 .0181487 .2329426 .049151

.8 .36 .2892433 -.2482261 .2916414 .2522156
 .96 .2887421 -.1399847 .2922255 .1605972

.8 .2 .36 .0468783 -.0087899 .0551085 .0489663
 .96 .0545528 .0190505 .0600887 .0606384
.8 .36 .0472787 -.0330972 .0557519 .0838365
 .96 .0527988 .0322133 .0593314 .1057405

40 .2 .2 .36 .2139006 -.0107267 .2157289 .0346844
 .96 .1308392 -.069821 .1345409 .0766476
.8 .36 .2860101 -.1769951 .2880623 .1827782
 .96 .2037343 -.2530963 .2074915 .2564813

.8 .2 .36  .0484516  .00534 .05493087 .04341313
 .96 .0299227 -.0166865 .0426183 .0458308
.8 .36  .047214 .0065783 .05429365 .07332394
 .96 .0287126 -.076941 .0420022 .1061275


