Frequentist and Bayesian stochastic frontier models in Stata

Federico Belotti[†] Silvio Daidone[†] Giuseppe Ilardi[‡]

[†]Università di Roma Tor Vergata, [‡]Bank of Italy

Florence, November 19th, 2009

- Prequentist Estimation
- Bayesian inference
- STATA commands

Objectives of the paper

This paper focuses on stochastic frontier models

- for both cross-section and longitudinal data
- with a parametric approach to estimation

Novel features: the newly available STATA command will

- be the first bayesian estimator of frontier parameters
- be comprehensive of most used and state-of-art frequentist estimators
- make extensive use of MATA functions

General framework -1-

- Starting from seminal study by Aigner, Lovell and Schmidt (1977), theoretical literature on stochastic frontier has grown vastly.
- The range of applications of the techniques described is huge.
- The economic meaning of a frontier is to represent the best-practice technology in a production process or in a particular economic sector.
- Cost frontiers describe the minimum level of cost given a certain output level and certain input prices.
- Production frontiers represent the maximum amount of output that can be obtained from a given level of inputs.
- The gap between the actual and the maximum output is a measure of inefficiency and an important issue in many application fields, such as production studies.

General framework -2-

- A general stochastic frontier model may be written as

$$\mathbf{y}_i = \mathbf{x}'_i \boldsymbol{\beta} + \boldsymbol{u}_i + \boldsymbol{v}_i \tag{1}$$

where y_i is the performance of firm i (output, profits, costs), β is the vector of technology parameters, v_i is the classical symmetric disturb, while u_i is the inefficiency.

- As well as the functional assumption on the form of the frontier, we must make some assumptions on the distribution and on the relations between the two errors in order to complete the statistical model.
- The typical assumptions in this model are

The independence between v e u.

2 $v_i \sim N(0, \sigma^2)$.

- **(a)** $u_i \sim F$, where F(x) is a generic family of distributions with $x \in \mathbb{R}_+$
- Objectives: in the first step we estimate the vector of technology parameters β and in the second the efficiency of each producer.

Cross-section -1-

In a cross-sectional setting, we present two different models: the normal-truncated normal and the normal-gamma. The former one is based on the following set of assumptions

$$\begin{split} \mathbf{v}_i &\sim \mathscr{N}(\mathbf{0}, \sigma_{\mathbf{v}_i}^2) \\ \boldsymbol{u}_i &\sim \mathscr{N}^+(\boldsymbol{\mu}_{it}, \sigma_{\boldsymbol{u}_i}^2) \\ \boldsymbol{\mu}_i &= \mathbf{q}_{it} \phi \\ \sigma_{\mathbf{v}_i}^2 &= \exp(\mathbf{w}_i \delta_i) \\ \sigma_{\boldsymbol{u}_i}^2 &= \exp(\mathbf{t}_i \gamma_i) \end{split}$$

The log-likelihood function for i = 1, ..., N firms is

$$\ln \mathscr{L} = -\frac{1}{2} \sum_{i} \ln \left[\exp(\mathbf{w}_{i} \delta_{i}) + \exp(\mathbf{t}_{i} \gamma_{i}) \right] - N \ln \Phi \left(-\frac{\mu_{i}}{\sigma_{u}} \right)$$

+
$$\sum_{i} \ln \Phi \left(\frac{\mu_{i}}{\sigma_{i} \lambda} - \frac{\varepsilon_{i} \lambda_{i}}{\sigma_{i}} \right) - \frac{1}{2} \sum_{i} \left(\frac{\varepsilon_{i} + \mu_{i}}{\sigma_{i}} \right)^{2}$$
(2)

Cross-section -2-

In the normal-gamma model $u_i \sim iid\Gamma(m)$. This formulation introduced and developed by Greene generalizes the one-parameter exponential distribution. The corresponding log-likelihood function can be written as the likelihood for the normal-exponential model plus a term which has complicated the analysis to date

$$\ln \mathscr{L} = N\left(\frac{\sigma_{v}^{2}}{2\sigma_{u}^{2}}\right) + \sum_{i} \frac{\varepsilon_{i}}{\sigma_{u}} + \sum_{i} \ln \Phi \left[-\frac{(\varepsilon_{i} + \sigma_{v}^{2}/\sigma_{u})}{\sigma_{v}}\right] + N[(m+1)\ln \sigma_{u} - \ln \Gamma(m+1)] + \sum_{i} \ln h(m,\varepsilon_{i}) = \ln \mathscr{L}_{EXP} + N[(m+1)\ln \sigma_{u} - \ln \Gamma(m+1)] + \sum_{i} \ln h(m,\varepsilon_{i})$$
(3)

where $\sum_{i} \ln h(m, \varepsilon_{i}) = E[z^{r} | z \ge 0]$ and $z \sim \mathcal{N}[\mu_{i}, \sigma_{v}^{2}]$ We estimate $h(m, \varepsilon_{i})$ by using the mean of a sample of draws from a normal distribution with underlying mean μ_{i} and variance σ_{v}^{2} truncated at zero.

Cross-section -3-

After technology parameters, the second step is to obtain an estimate of efficiency. For the truncated normal model we get both Jondrow, Lovell, Materov and Schmidt (1982) and Battese and Coelli (1988) estimators of technical efficiency, respectively

$$TE_i = \exp(-E\{u_i|\varepsilon_i\}) \tag{4}$$

$$TE_i = E(\exp\{-u_i\}|\varepsilon_i)$$
(5)

Bera and Sharma (1996) provide the formulas to get confidence intervals for these point estimators.

While for the gamma model we numerically approximate the following expression

$$E(u_i|\varepsilon_i) = \frac{h(m+1,\varepsilon_i)}{h(m,\varepsilon_i)}$$
(6)

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

where m is the shape parameter of the gamma distribution

Panel -1-

- Panel data estimation has received great coverage in the literature.
- Access to panel data enables one to avoid either strong distributional assumptions or the equally strong independence assumption.
- Latest developments in research community try to disentangle pure inefficiency from what is to be considered unobserved heterogeneity.
- Here we show the Greene (2005) "true" random effect model, the newest random effects formulations.

< ロ > < 同 > < 回 > < 回 >

Panel -2-

• In its "true" random effects formulation Greene (2005) extends the conventional maximum likelihood estimation of random effects models

$$\mathbf{y}_{it} = \alpha + \beta' \mathbf{x}_{it} + \mathbf{w}_i + \mathbf{v}_{it} \pm u_{it} \tag{7}$$

where w_i is the random firm specific effect and v_{it} and u_{it} are the symmetric and one sided components.

- It is necessary to integrate the common term out of the likelihood function in order to estimate this random effects model by maximum likelihood.
- Since there is no closed form for the density of the compound disturbance in this model, we integrate and simulate the log-likelihood

$$\ln \mathscr{L}_{\mathcal{S}}(\beta,\lambda,\sigma,\vartheta) = \sum_{i=1}^{N} \ln \frac{1}{R} \sum_{r=1}^{R} \left[\prod_{t=1}^{T} \frac{2}{\sigma} \phi\left(\frac{\varepsilon_{it} | w_{ir}}{\sigma}\right) \Phi\left(\frac{\lambda \varepsilon_{it} | w_{ir}}{\sigma}\right) \right]$$
(8)

where ϑ_i are the parameters in the distribution of w_i and w_{ir} is the r-th simulated draw for observation *i*.

Historical notes on Bayesian estimation

- The Bayesian inference in this context was proposed by van den Broeck et al. (1994). In this work, the authors computed Bayes factors between a series of parametric models.
- Koop et al. (1997) developed Bayesian inferential procedures to be applied to panel data, distinguishing between fixed and random effects models.
- There is only one existing work (Griffin and Steel (2004, JoE)) which adopts the semiparametric Bayesian inference.
- In this work, we consider two distributions: (i) an exponential and (ii) a flexible gamma (not just an Erlang) for the vector of inefficiencies u

Priors -1-

In order to build a Bayesian regression model, we have to define a set of priors on the unknown vector of parameters $\boldsymbol{\eta} = (\boldsymbol{\beta}, \sigma^2, v, \lambda)$. We assume the following prior structure

$$\begin{aligned} \pi(\boldsymbol{\eta}) &= \pi(\boldsymbol{\beta}, \sigma^2, \nu, \lambda) \\ &= \pi(\boldsymbol{\beta} | \sigma^2) \pi(\sigma^2) \pi(\nu) \pi(\lambda) \end{aligned}$$

where all distributions on the right-hand side will be proper, ensuring us to have a proper posterior distribution. In the exponential case $\pi(v) = 1$.

Priors -2-

• Prior on β

$$\pi(\pmb{\beta}|\sigma^2) \sim N_k(\beta_0,\sigma^2 W)$$

where $\beta_0 = \mathbf{0}$ and $W = d_0 I_k$. The tuning of the hyperparameter d_0 does not represent a critical point and, as reference value, we set $d_0 = 10^4$. Moreover the choice of a different reasonable large value for the d_0 should not produce a significative effect on the posterior inference.

• Prior on σ^2

Analogously to the previous case, we elicit the variance with the most common informative solution: an Inverse Gamma prior

$$\pi(\sigma^2) \sim IG(a_0/2, b_0/2).$$

In panel data model (Fernandez *et al.*, JoE 1997), we can relax this choice and use a non informative priors on (β, σ^2) .

Priors -3-

• Prior on v and λ

In these two cases we choose a Gamma distribution as a prior. In particular for λ^{-1} , if we define efficiency as $r_i = exp(-u_i)$, and adopt the prior distribution

$$\pi(\lambda^{-1}|\phi) = Ga(\phi, -\ln(r^*)),$$

then r^* is the implied prior median efficiency. We can fix $\phi = 1$ or we shall complete the prior for the general gamma inefficiency distribution by $\phi \sim Ga(1,1)$ which is centered through the prior mean over the value leading to the exponential distribution, and has a reasonable prior variance for ϕ of unity.

Likelihood

Since the joint density of $\mathbf{y} = (y_i, ..., y_n)$ and $\mathbf{u} = (u_1, ..., u_n n)$ is given by

$$f(\mathbf{y}, \mathbf{u}) = \prod_{1=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{\frac{(y_i - x'_i\beta - u_i)^2}{2\sigma^2}\right\} \times \\ \times \frac{\lambda^{-\nu}}{\Gamma(\nu)} \cdot u_i^{\nu-1} \exp\left\{-\frac{u_i}{\lambda}\right\}$$
(9)

After marginalizing over u the relation (9) the likelihood function can be expressed as

$$L(\boldsymbol{\eta}|\boldsymbol{y}) \propto \prod_{1=1}^{n} \frac{\lambda^{-\nu}}{\Gamma(\nu)} \exp\left\{\frac{\sigma^{2}}{2\lambda^{2}} + \lambda^{-1}(\boldsymbol{y}_{i} - \boldsymbol{x}_{i}^{'}\boldsymbol{\beta})\right\} \times \int_{0}^{+\infty} u_{i}^{\nu-1} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left\{\frac{(\boldsymbol{y}_{i} - \boldsymbol{m}_{i})^{2}}{2\sigma^{2}}\right\} du_{i}, \quad (10)$$

イロト 不得 トイヨト イヨト 二日

where $m_i = y_i - x'_i \beta - \lambda^{-1} \cdot \sigma^2$.

Posterior distribution

The posterior distribution is proportional to the product of the priors $\pi(\eta)$ and the likelihood $\pi(y|\eta)$, i.e.

$$\pi(\boldsymbol{\eta}|\boldsymbol{y}) \propto \prod_{1=1}^{n} \frac{\lambda^{-\nu}}{\Gamma(\nu)} \exp\left\{\frac{\sigma^{2}}{2\lambda^{2}} + \lambda^{-1}(y_{i} - h(\beta, x_{i}))\right\} \times \int_{0}^{+\infty} u_{i}^{\nu-1} \frac{1}{\sqrt{2\pi\sigma^{2}}} \exp\left\{\frac{(y_{i} - m_{i})^{2}}{2\sigma^{2}}\right\} du_{i} \times \pi(\boldsymbol{\beta}|\sigma^{2})\pi(\sigma^{2})\pi(\nu)\pi(\lambda).$$

- The posterior is analytically intractable
- We construct a Markov chain defined by conditional distributions of parameters.
- In this Markov chain, a Gibbs sampler, the random draws are made from each full-conditional posterior distribution.
- we apply a data augmentation scheme (Tanner and Wong 1987) to our model treating the latent random vector u as an unknown parameter vector to be estimated.

We provide four new Stata commands:

- sfcross and sfpanel fit frequentist cross-sectional and panel stochastic frontier models, improving already existing commands frontier and xtfrontier.
- bsfcross and bsfpanel fit bayesian cross-sectional and panel stochastic frontier models. They are the first bayesian estimators within Stata which do not make use of WinBugs interface and the first general purpose bayesian estimators of stochastic frontier models.

The general syntax of these commands is as follows

sfcross depvar [indepvars] [if] [in] [,options] sfpanel depvar [indepvars] [if] [in] [,options] bsfcross depvar [indepvars] [if] [in] [,options] bsfpanel depvar [indepvars] [if] [in] [,options]

We use Italian hospitals' data coming from Lazio region. From the Lazio Public Health Agency we got Hospital Discharge Records that were used to build output measures. From the Italian ministry of Health we received input variables such as number of beds, physicians, etc. We limit our analysis to

- Acute care hospitals, since rehabilitation care and long-term care serve very different production functions
- Public and not-for-profit hospitals. While for private hospitals we study only their activity which is publicly financed.
- Years between 2000 and 2005, which represents an interesting period to assess the effect of DRG system.
- Overall we have a weakly balanced panel of 625 observations

< ロ > < 同 > < 回 > < 回 >

. d 'MainVariables'

variable name	storage type	display format	value label	variable label
lnorm_weighta	float	%9.0g		Sum of DRG weights in acute care
alpha1	float	%9.0g		# beds
alpha2	float	%9.0g		# physicians
alpha3	float	%9.0g		# nurses
alpha4	float	%9.0g		# other workers
alpha11	float	%9.0g		Squared # beds
alpha22	float	%9.0g		Squared # physicians
alpha33	float	%9.0g		Squared # nurses
alpha44	float	%9.0g		Squared # other workers
alpha12	float	%9.0g		Interaction # beds - # physicians
alpha13	float	%9.0g		Interaction # beds - # nurses
alpha14	float	%9.0g		Interaction # beds - # other workers
alpha23	float	%9.0g		Interaction # physicians - # nurses
alpha24	float	%9.0g		Interaction # physicians - # other workers
alpha34	float	%9.0g		Interaction # nurses - # other workers
dyear2001	byte	%9.0g		Time dummy: 2001
dyear2002	byte	%9.0g		Time dummy: 2002
dyear2003	byte	%9.0g		Time dummy: 2003
dyear2004	byte	%9.0g		Time dummy: 2004
dyear2005	byte	%9.0g		Time dummy: 2005

イロト イポト イヨト イヨト

Frequentist paradigm: Cross-section truncated-normal model Conditional mean model with explanatory variables for idiosyncratic error variance function

<pre>#delimit; . sfcross \$Y \$Xlin \$Xsq \$Xint \$dY, d(tn) mu(private1 equip, nocons) v(lnorm_beds) technique(nr) nolog;</pre>							
#delimit cr					Ŭ		
Truncated-norm	mal distribut	cion of u		Num	ber of obs	= 625	
				Wal	d chi2(19).	= 4714.45	
Log-likelihoo	d = -293.	.3616		Pro	ob > chi2	= 0.0000	
lnorm_wei~ta	Coef.	Std. Err.	z	P> z	[95% Conf	. Interval]	
Frontier	Î						
alpha1	.7589718	.0462538	16.41	0.000	.6683162	.8496275	
alpha2	.2464217	.0429955	5.73	0.000	.1621521	.3306914	
alpha3	.0131866	.0509452	0.26	0.796	0866642	.1130374	
alpha4	0281444	.0411581	-0.68	0.494	1088128	.0525241	
alpha11	.2855433	.0689453	4.14	0.000	.150413	.4206735	
alpha22	.1145137	.0385944	2.97	0.003	.0388701	.1901574	
alpha33	.066102	.0572529	1.15	0.248	0461116	.1783155	
alpha44	0317559	.0288189	-1.10	0.270	0882398	.024728	
alpha12	1387485	.0655815	-2.12	0.034	2672858	0102112	

Frequentist paradigm: Cross-section truncated-normal model

Conditional mean model with explanatory variables for idiosyncratic error variance function

HO: No ineffi	ci	ency compon	ent:	z = -	36.593	Prob	<=z = 0.000
_cons	1	-2.813833	.1221077	-23.04	0.000	-3.05316	-2.574506
Vsigma lnorm_beds	I I	5168447	.0965719	-5.35	0.000	7061222	3275671
_cons	+-	-1.053533	.1170353	-9.00	0.000	-1.282918	8241479
Usigma	1						
equip	1	-2.355163	.6548962	-3.60	0.000	-3.638736	-1.07159
private1	I.	.0240676	.1303645	0.18	0.854	2314421	.2795773
NU	i.						
_cons	 +	.5071762	.0386438	13.12	0.000	.4314357	.5829166
dyear2005	1	.3354143	.0503873	6.66	0.000	.2366571	.4341715
dyear2004	1	.2339058	.0484147	4.83	0.000	.1390147	.328797
dyear2003	1	.1838898	.0474158	3.88	0.000	.0909565	.276823
dyear2002	1	.1053177	.0472129	2.23	0.026	.0127822	.1978532
dyear2001	1	.0455823	.0475237	0.96	0.337	0475625	.138727
alpha34	1	063915	.0421846	-1.52	0.130	1465954	.0187653
alpha24	1	.080828	.0493739	1.64	0.102	0159431	.1775992
alpha23	1	0491069	.0352093	-1.39	0.163	1181159	.0199021
alpha14	1	1007611	.0421255	-2.39	0.017	1833255	0181966
alpha13	1	.0718528	.0605002	1.19	0.235	0467254	.1904311

Frequentist paradigm: Cross-section gamma model

sfcross \$Y \$Xlin \$Xsq \$Xint \$dY, d(g) nsim(100) simtype(3) base(7) technique(bhhh)

Gamma distribu	ution of u			Num	ber of obs	3 =	625
				Wal	d chi2(19)) =	6893.78
Simulated Log	-likelihood	= -235	.3336	Pro	b > chi2	=	0.0000
Number of Rand Base for Rando	domized Halt omized Halto	on Sequences n Sequences	=	100 7			
						 7e	
inorm_wei ta		Stu. Err.	z	P> Z	[95% (Interval
Frontier	I						
alpha1	.8352786	.0393152	21.25	0.000	.75822	222	.912335
alpha2	.2293403	.0352901	6.50	0.000	.1601	173	.2985076
alpha3	0501789	.034228	-1.47	0.143	11726	344	.0169067
alpha4	.011842	.0320268	0.37	0.712	05092	294	.0746134
alpha11	.3175812	.0516937	6.14	0.000	.21626	335	.4188989
alpha22	.133669	.0285461	4.68	0.000	.07771	197	.1896183
alpha33	0231349	.0315887	-0.73	0.464	08504	176	.0387778
alpha44	0272225	.0195063	-1.40	0.163	06545	542	.0110093

(Continued on next page)

• • • • • • • • •

Frequentist paradigm: Cross-section gamma model

HO: No inefficiency component:				z =	-36.593	Prob	z = 0.000
Shape m	 	.5028515	.0427102	11.77	0.000	.4191411	.5865619
Vsigma2 sigma2v	 -+-	.0614984	.0050543	12.17	0.000	.0515921	.0714047
Theta theta	 -+-	2.425863	.2213349	10.96	0.000	1.992055	2.859672
_cons	i +-	.3063856	.0339053	9.04	0.000	. 2399323	.3728388
dyear2004 dyear2005	ł	.3423928	.0455804	7.51	0.000	. 2530568	. 4317288
dyear2003		2517000	.0436916	4.13	0.000	1650489	.2074993
dyear2002		.1244262	.0443071	2.81	0.005	.03/5858	.2112665
dyear2001		.0482466	.044134	1.09	0.274	0382544	.1347477
alpha34		0598163	.0262488	-2.28	0.023	111263	0083697
alpha24	1	.0785029	.0325432	2.41	0.016	.0147194	.1422864
alpha23		016129	.0214855	-0.75	0.453	0582398	.0259819
alpha14		1121965	.030874	-3.63	0.000	1727085	0516846
alpha13		.1351881	.0378178	3.57	0.000	.0610665	.2093096
alpha12		1943535	.0452281	-4.30	0.000	2829988	1057081

Federico Belotti[†], Silvio Daidone[†], Giuseppe Ilardi[‡] Frequentist and Bayesian stochastic frontier models in Stata

Gamma vs Truncated-normal JLMS technical efficiency estimates

Truncated-normal technical efficiency estimates: JLMS vs BC estimator

Bayesian paradigm: Cross-section exponential model

. bsfcross \$Y \$Xlin \$Xsq \$Xint \$dY, d(exp) iteration(2000) burnin(200) thin(2) pred(4)

Bayesian Stochastic frontier - Exponential distribution of u

Prior hyperparameters: Sigma2--> a: 1 b: 1 Lambda--> a: 1 b: .2231436

Settings: Iterations: 2000 Burnin: 200 Thinning: 2

lnorm_weighta	Mean	Std.Dev.	p25	Median	p75
alpha1 alpha2	.3860493 .832221	.0368384	.3614341 .8047699	.3854457 .8319192	.4103777 .859648
alpha3	.232736	.0373776	.206227	.2330651	.2585723
alpha4	0420527	.0398248	0688815	0420544	0145645

(Continued on next page)

< ロ > < 同 > < 三 > < 三 > -

Bayesian paradigm: Cross-section exponential model

alpha11	.0047307	.0368207		0205384	.0045468	.0295354
alpha22	.32764	.0576184		.2887665	.3281395	.3641831
alpha33	.1367023	.0348657		.1131869	.1363166	.1605194
alpha44	0106984	.046727		0407787	0111242	.0191945
alpha12	0215921	.0257557		0391617	0232286	0057145
alpha13	1965854	.0542004		2336578	1963845	15888
alpha14	.1346051	.0508769		.1011163	.1350112	.168994
alpha23	114953	.0387588		1402465	1144225	0881108
alpha24	0207061	.0330627		042861	0210401	.0012065
alpha34	.0802777	.0441296		.0502374	.0792411	.1107116
dyear2001	0660719	.0359892		0899417	0658088	0412263
dyear2002	.050062	.0475268		.0179117	.0521054	.0816535
dyear2003	.1228649	.0469407		.0919335	.1234543	.1539608
dyear2004	.1850392	.0473779		.1528647	.1856285	.2175337
dyear2005	.2561303	.0467022		.2240115	.2562613	.2885856
_cons	.3529473	.0478826		.3218152	.3519741	.3846548
	+		+-			
sigma2	.0638855	.0058361		.0597791	.063804	.0677512
lambda	3.432143	.2247785		3.287601	3.425935	3.576674

< ロ > < 同 > < 回 > < 回 >

Parameters' simulation

Federico Belotti[†], Silvio Daidone[†], Giuseppe Ilardi[‡]

Frequentist and Bayesian stochastic frontier models in Stata

э

Bayesian cross-section estimate of technical efficiency: "mean" JLMS

Frequentist paradigm: "True" RE model

```
#delimit; sfpanel $Y $Xlin $Xsq $Xint $dY, model(tre) id(irc_id)
   time(year) simtype(3) base(37) nsim(10) technique(dfp) nolog;
#delimit cr
True Random Effects model (Half-Normal)
                                              Number of obs =
                                                                   625
Group variable: irc_id
                                           Number of groups =
                                                                   113
                                          Obs per group: min =
                                                                    1
                                                                   5.5
                                                       avg
                                                            =
                                                                    6
                                                       max =
Simulated Log-likelihood
                                 = -327.7370
Number of Randomized Halton Sequences =
                                       10
Base for Randomized Halton Sequences =
                                         37
                       Standard
lnorm_wei~ta | Coef. Std. Err. t P>|t|
                                                   [95% Conf. Interval]
Frontier
             .770435 .0495812
                                   15.54
                                         0.000
                                                   .6730184
                                                              .8678515
     alpha1
     alpha2 | .2372707 .0455114
                                   5.21 0.000
                                                    .1478504 .326691
     alpha3 -.0276846 .045677 -0.61 0.545 -.1174301
                                                              .0620609
     alpha4 .0393227 .0448968 0.88 0.382
                                                  -.04889
                                                              .1275355
    alpha11
               .3370867
                         .0611261
                                    5.51
                                          0.000
                                                   2169868
                                                              .4571865
                                                  < ロ > < 同 > < 三 > < 三 > -
```

Federico Belotti[†], Silvio Daidone[†], Giuseppe Ilardi[‡] Frequentist and Bayesian stochastic frontier models in Stata

Frequentist paradigm: "True" RE model

alpha22	.1252176	.039408	3.18	0.002	.0477893	.2026459
alpha33	.0520339	.0543918	0.96	0.339	0548344	.1589021
alpha44	0196035	.031324	-0.63	0.532	0811486	.0419415
alpha12	1892795	.0601836	-3.15	0.002	3075275	0710315
alpha13	.1283317	.0527173	2.43	0.015	.0247534	.2319099
alpha14	1229131	.0416444	-2.95	0.003	2047355	0410906
alpha23	0560559	.0346994	-1.62	0.107	1242329	.0121211
alpha24	.112425	.0459849	2.44	0.015	.0220744	.2027756
alpha34	0855912	.0394955	-2.17	0.031	1631915	0079908
dyear2001	.0556283	.0520666	1.07	0.286	0466715	.157928
dyear2002	.1235663	.0515067	2.40	0.017	.0223665	.2247661
dyear2003	.1855624	.0517561	3.59	0.000	.0838727	.2872522
dyear2004	.2702399	.0530714	5.09	0.000	.1659659	.3745138
dyear2005	.385845	.0563583	6.85	0.000	.275113	.496577
_cons	.5347613	.0404681	13.21	0.000	.45525	.6142726
Lambda	+ 					
lambda	3.070895	.295635	10.39	0.000	2.490035	3.651755
Sigma	+ 					
sigma	.6469433	.0232561	27.82	0.000	.6012499	.6926367
Theta	+ 					
theta	1203508	.0187606	-6.42	0.000	1572113	0834902

Federico Belotti[†], Silvio Daidone[†], Giuseppe Ilardi[‡]

Frequentist and Bayesian stochastic frontier models in Stata

True RE technical efficiency estimates: JLMS

Federico Belotti[†], Silvio Daidone[†], Giuseppe Ilardi[‡] Frequentist and Bayesian stochastic frontier models in Stata

Bayesian paradigm: Panel exponential model

```
#delimit:
. bsfpanel $Y $Xlin $Xsq $Xint $dY, id(irc_id) time(year) d(exp)
   iteration(2000) thin(2) vid pred(5);
#delimit cr
Bayesian Stochastic frontier - Exponential distribution of u
Prior hyperparameters:
Sigma2--> a: 1 b: 1
Lambda --> a: 1 b: .2231436
Settings:
Iterations: 2000
Burnin: 200
Thinning: 2
 lnorm_weighta | Mean Std.Dev. | p25 Median p75
      alpha1 .6160194 .0505232 .5817509 .6153182 .6498718
       alpha2 | .592604 .0557423 | .5555525 .5935681 .6283623
alpha3 | .1546137 .0452847 | .1226226 .1546886 .1850767
       alpha4 .0814004
                                      .0509097 .0804234 .1114784
                            .0451653
```

Federico Belotti[†], Silvio Daidone[†], Giuseppe Ilardi[‡]

Frequentist and Bayesian stochastic frontier models in Stata

Bayesian paradigm: Panel exponential model

_ _ _ _ .

alpha11	.0525024	.0323081	.030402	.0533914	.0748135
alpha22	.4272994	.0613689	.3867003	.4296765	.4691825
alpha33	.1586183	.0362113	.1348455	.1582763	.1820672
alpha44	.0877115	.0377077	.061082	.0867714	.1136633
alpha12	.0115459	.0181532	0010353	.0113679	.0236347
alpha13	1984756	.0557347	2370119	197949	1616747
alpha14	.0472381	.0496899	.0143411	.0472077	.0805553
alpha23	0555072	.0316713	0761171	0553523	0346504
alpha24	0805221	.0245477	096861	0801524	0645422
alpha34	.0525304	.0350739	.0296966	.0515689	.0756384
dyear2001	0443351	.0292965	0635751	0437169	0251153
dyear2002	.0661587	.0306075	.0449388	.0666169	.0872127
dyear2003	.1066004	.0305289	.0853737	.106302	.1277608
dyear2004	.1792789	.0319992	.1564392	.1788834	.2013099
dyear2005	.2402727	.0316348	.218862	.2404739	.2618161
_cons	.2884428	.0324821	.2671985	.2879481	.3103192
+	•	+			
sigma2	.0450103	.0030748	.0428612	.0448632	.0469912
lambda	1.869713	.2346999	1.712583	1.854712	2.023131

Bayesian panel estimate of technical efficiency: "mean" JLMS

